Suppr超能文献

计算加速碘化亚铜中预期掺杂剂的发现。

Computational acceleration of prospective dopant discovery in cuprous iodide.

机构信息

Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel, Switzerland.

Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.

出版信息

Phys Chem Chem Phys. 2019 Sep 21;21(35):18839-18849. doi: 10.1039/c9cp02711d. Epub 2019 Jul 29.

Abstract

The zinc blende (γ) phase of copper iodide holds the record hole conductivity for intrinsic transparent p-type semiconductors. In this work, we employ a high-throughput approach to systematically explore strategies for enhancing γ-CuI further by impurity incorporation. Our objectives are not only to find a practical approach to increase the hole conductivity in CuI thin films, but also to explore the possibility for ambivalent doping. In total 64 chemical elements were investigated as possible substitutionals on either the copper or the iodine site. All chalcogen elements were found to display acceptor character when substituting iodine, with sulfur and selenium significantly enhancing carrier concentrations produced by the native V defects under conditions most favorable for impurity incorporation. Furthermore, eight impurities suitable for n-type doping were discovered. Unfortunately, our work also reveals that donor doping is hindered by compensating native defects, making ambipolar doping unlikely. Finally, we investigated how the presence of impurities influences the optical properties. In the majority of the interesting cases, we found no deep states in the band-gap, showing that CuI remains transparent upon doping.

摘要

碘化亚铜的闪锌矿(γ)相拥有本征透明 p 型半导体中最高的空穴电导率记录。在这项工作中,我们采用高通量方法系统地研究了通过杂质掺入进一步增强 γ-CuI 的策略。我们的目标不仅是找到一种提高 CuI 薄膜中空穴电导率的实用方法,还要探索双掺杂的可能性。总共研究了 64 种化学元素作为铜或碘位的可能替代物。所有的硫属元素在取代碘时都表现出受主特性,而硫和硒在最有利于杂质掺入的条件下,显著提高了本征 V 缺陷产生的载流子浓度。此外,还发现了 8 种适合 n 型掺杂的杂质。不幸的是,我们的工作还表明施主掺杂受到本征缺陷的补偿阻碍,使得双极性掺杂不太可能。最后,我们研究了杂质的存在如何影响光学性质。在大多数有趣的情况下,我们在带隙中没有发现深能级,这表明 CuI 在掺杂后仍然是透明的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验