Suppr超能文献

用于生成碳簇C(n = 3 - 6,10)稳定结构的改进粒子群优化算法

Modified Particle Swarm Optimization Algorithms for the Generation of Stable Structures of Carbon Clusters, C ( = 3-6, 10).

作者信息

Jana Gourhari, Mitra Arka, Pan Sudip, Sural Shamik, Chattaraj Pratim K

机构信息

Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, India.

Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India.

出版信息

Front Chem. 2019 Jul 12;7:485. doi: 10.3389/fchem.2019.00485. eCollection 2019.

Abstract

Particle Swarm Optimization (PSO), a population based technique for stochastic search in a multidimensional space, has so far been employed successfully for solving a variety of optimization problems including many multifaceted problems, where other popular methods like steepest descent, gradient descent, conjugate gradient, Newton method, etc. do not give satisfactory results. Herein, we propose a modified PSO algorithm for unbiased global minima search by integrating with density functional theory which turns out to be superior to the other evolutionary methods such as simulated annealing, basin hopping and genetic algorithm. The present PSO code combines evolutionary algorithm with a variational optimization technique through interfacing of PSO with the Gaussian software, where the latter is used for single point energy calculation in each iteration step of PSO. Pure carbon and carbon containing systems have been of great interest for several decades due to their important role in the evolution of life as well as wide applications in various research fields. Our study shows how arbitrary and randomly generated small C clusters ( = 3-6, 10) can be transformed into the corresponding global minimum structure. The detailed results signify that the proposed technique is quite promising in finding the best global solution for small population size clusters.

摘要

粒子群优化算法(PSO)是一种用于多维空间随机搜索的基于种群的技术,迄今为止已成功应用于解决各种优化问题,包括许多其他流行方法(如最速下降法、梯度下降法、共轭梯度法、牛顿法等)无法给出满意结果的多方面问题。在此,我们提出一种改进的PSO算法,通过与密度泛函理论相结合进行无偏全局极小值搜索,结果表明该算法优于模拟退火、盆地跳跃和遗传算法等其他进化方法。当前的PSO代码通过PSO与高斯软件的接口,将进化算法与变分优化技术相结合,其中高斯软件用于PSO每次迭代步骤中的单点能量计算。几十年来,纯碳及含碳体系因其在生命演化中的重要作用以及在各个研究领域的广泛应用而备受关注。我们的研究展示了任意随机生成的小碳簇(=3 - 6, 10)如何转变为相应的全局最小结构。详细结果表明,所提出的技术在为小种群规模簇寻找最佳全局解方面颇具前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1274/6640203/c13479c8215e/fchem-07-00485-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验