Langmuir. 2019 Aug 20;35(33):10958-10964. doi: 10.1021/acs.langmuir.9b01749. Epub 2019 Aug 8.
Studies on the fabrication of polymer-protein hybrid self-assemblies have aroused great interest over the past years because of a broad range of applications of the materials in drug/protein delivery, biosensors, and enhancement of protein stability. The hybrid assemblies are usually fabricated from polymer-protein bioconjugates, which may suffer from the damages to the protein structures and the loss of functionalities in the synthesis. Herein, we report a simple and efficient approach to the fabrication of vesicle-like structures based on coassembly of homopolymer chains and protein molecules. At room temperature, poly(-isopropylacrylamide) (PNIPAM) and bovine serum albumin (BSA) are able to form complexes through hydrophobic interactions in aqueous solution. Upon heating to a temperature above the cloud point of PNIPAM, vesicle-like structures with collapsed PNIPAM in the walls and BSA at the surfaces are formed. The size and membrane thickness of the assemblies can be tuned by the molar ratio of PNIPAM to BSA. The hydrophobic interaction between PNIPAM and BSA plays a key role in the complex formation and self-assembly process. The complexes and assembled structures are analyzed by using micro differential scanning calorimetry, light scattering, and transmission electron microscopy. BSA in the assemblies retains over 90% of its activity, and the protein stability is enhanced because of the hydrophobic interaction between proteins and polymers. This approach allows us to prepare polymer-protein assemblies without bioconjugate synthesis. Meanwhile, possible damages to the protein structures and the loss of bioactivities of proteins can be avoided.
近年来,由于聚合物-蛋白质杂化自组装材料在药物/蛋白质递送、生物传感器和增强蛋白质稳定性等方面的广泛应用,人们对其制备研究产生了浓厚的兴趣。这些杂化组装体通常是由聚合物-蛋白质生物缀合物制备的,但在合成过程中,这些缀合物可能会破坏蛋白质结构并导致其功能丧失。在此,我们报告了一种简单有效的方法,通过均聚物链和蛋白质分子的共组装来制备囊泡样结构。在室温下,聚(异丙基丙烯酰胺)(PNIPAM)和牛血清白蛋白(BSA)能够在水溶液中通过疏水相互作用形成复合物。当加热到高于 PNIPAM 浊点的温度时,在壁中塌陷的 PNIPAM 和表面上的 BSA 形成囊泡样结构。通过调节 PNIPAM 与 BSA 的摩尔比,可以调节组装体的尺寸和膜厚度。PNIPAM 和 BSA 之间的疏水相互作用在复合物形成和自组装过程中起着关键作用。使用微差示扫描量热法、光散射和透射电子显微镜对复合物和组装结构进行了分析。组装体中的 BSA 保留了超过 90%的活性,并且由于蛋白质和聚合物之间的疏水相互作用,蛋白质的稳定性得到了增强。这种方法允许我们在不进行生物缀合合成的情况下制备聚合物-蛋白质组装体。同时,可以避免对蛋白质结构的可能破坏和蛋白质生物活性的丧失。