线粒体氧化应激诱导的ATF3转录变体介导脂毒性脑微血管损伤。
Mitochondrial oxidative stress-induced transcript variants of ATF3 mediate lipotoxic brain microvascular injury.
作者信息
Nyunt Tun, Britton Monica, Wanichthanarak Kwanjeera, Budamagunta Madhu, Voss John C, Wilson Dennis W, Rutledge John C, Aung Hnin H
机构信息
Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA, 95616, USA.
Genome Center and Bioinformatics Core Facility, University of California, Davis, CA, 95616, USA.
出版信息
Free Radic Biol Med. 2019 Nov 1;143:25-46. doi: 10.1016/j.freeradbiomed.2019.07.024. Epub 2019 Jul 26.
Elevation of blood triglycerides, primarily triglyceride-rich lipoproteins (TGRL), is an independent risk factor for cardiovascular disease and vascular dementia (VaD). Accumulating evidence indicates that both atherosclerosis and VaD are linked to vascular inflammation. However, the role of TGRL in vascular inflammation, which increases risk for VaD, remains largely unknown and its underlying mechanisms are still unclear. We strived to determine the effects of postprandial TGRL exposure on brain microvascular endothelial cells, the potential risk factor of vascular inflammation, resulting in VaD. We showed in Aung et al., J Lipid Res., 2016 that postprandial TGRL lipolysis products (TL) activate mitochondrial reactive oxygen species (ROS) and increase the expression of the stress-responsive protein, activating transcription factor 3 (ATF3), which injures human brain microvascular endothelial cells (HBMECs) in vitro. In this study, we deployed high-throughput sequencing (HTS)-based RNA sequencing methods and mito stress and glycolytic rate assays with an Agilent Seahorse XF analyzer and profiled the differential expression of transcripts, constructed signaling pathways, and measured mitochondrial respiration, ATP production, proton leak, and glycolysis of HBMECs treated with TL. Conclusions: TL potentiate ROS by mitochondria which activate mitochondrial oxidative stress, decrease ATP production, increase mitochondrial proton leak and glycolysis rate, and mitochondria DNA damage. Additionally, CPT1A1 siRNA knockdown suppresses oxidative stress and prevents mitochondrial dysfunction and vascular inflammation in TL treated HBMECs. TL activates ATF3-MAPKinase, TNF, and NRF2 signaling pathways. Furthermore, the NRF2 signaling pathway which is upstream of the ATF3-MAPKinase signaling pathway, is also regulated by the mitochondrial oxidative stress. We are the first to report differential inflammatory characteristics of transcript variants 4 (ATF3-T4) and 5 (ATF3-T5) of the stress responsive gene ATF3 in HBMECs induced by postprandial TL. Specifically, our data indicates that ATF3-T4 predominantly regulates the TL-induced brain microvascular inflammation and TNF signaling. Both siRNAs of ATF3-T4 and ATF3-T5 suppress cells apoptosis and lipotoxic brain microvascular endothelial cells. These novel signaling pathways triggered by oxidative stress-responsive transcript variants, ATF3-T4 and ATF3-T5, in the brain microvascular inflammation induced by TGRL lipolysis products may contribute to pathophysiological processes of vascular dementia.
血液中甘油三酯升高,主要是富含甘油三酯的脂蛋白(TGRL)升高,是心血管疾病和血管性痴呆(VaD)的独立危险因素。越来越多的证据表明,动脉粥样硬化和VaD都与血管炎症有关。然而,TGRL在增加VaD风险的血管炎症中的作用仍基本未知,其潜在机制也尚不清楚。我们致力于确定餐后TGRL暴露对脑微血管内皮细胞的影响,脑微血管内皮细胞是血管炎症的潜在危险因素,可导致VaD。我们在Aung等人于2016年发表在《脂质研究杂志》上的研究中表明,餐后TGRL脂解产物(TL)可激活线粒体活性氧(ROS)并增加应激反应蛋白激活转录因子3(ATF3)的表达,这在体外会损伤人脑微血管内皮细胞(HBMECs)。在本研究中,我们采用基于高通量测序(HTS)的RNA测序方法,并用安捷伦Seahorse XF分析仪进行线粒体应激和糖酵解速率测定,分析了经TL处理的HBMECs转录本的差异表达,构建了信号通路,并测量了线粒体呼吸、ATP生成、质子泄漏和糖酵解。结论:TL通过线粒体增强ROS,从而激活线粒体氧化应激,降低ATP生成,增加线粒体质子泄漏和糖酵解速率,并导致线粒体DNA损伤。此外,CPT1A1 siRNA敲低可抑制氧化应激,并预防经TL处理的HBMECs中的线粒体功能障碍和血管炎症。TL激活ATF3 - MAP激酶、TNF和NRF2信号通路。此外,位于ATF3 - MAP激酶信号通路上游的NRF2信号通路也受线粒体氧化应激调节。我们首次报道了餐后TL诱导的HBMECs中应激反应基因ATF3的转录变体4(ATF3 - T4)和5(ATF3 - T5)的不同炎症特征。具体而言,我们的数据表明ATF3 - T4主要调节TL诱导的脑微血管炎症和TNF信号通路。ATF3 - T4和ATF3 - T5的siRNA均可抑制细胞凋亡和脂毒性脑微血管内皮细胞。由氧化应激反应转录变体ATF3 - T4和ATF3 - T5在TGRL脂解产物诱导的脑微血管炎症中触发的这些新信号通路可能有助于血管性痴呆的病理生理过程。
相似文献
Free Radic Biol Med. 2019-11-1
Arterioscler Thromb Vasc Biol. 2013-7-18
BMC Syst Biol. 2014-7-4
Phys Chem Chem Phys. 2014-10-21
引用本文的文献
Front Mol Neurosci. 2024-10-17
本文引用的文献
Am J Physiol Cell Physiol. 2019-1-16
Redox Biol. 2017-12-30
J Cent Nerv Syst Dis. 2017-5-15
Am J Physiol Heart Circ Physiol. 2017-3-1
Biochim Biophys Acta Mol Basis Dis. 2016-11-9