School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, Michigan, 48109, USA.
Ecol Appl. 2019 Dec;29(8):e01986. doi: 10.1002/eap.1986. Epub 2019 Aug 30.
Nitrogen (N) losses from intensified agriculture are a major cause of global change, due to nitrate (NO ) export and the eutrophication of aquatic systems as well as emissions of nitrous oxide (N O) into the atmosphere. Diversified agroecosystems with legume cover crops couple N and carbon (C) inputs to soil and reduce N pollution, but there is a need to identify controls on legume N fixation across ecosystems with variable soil conditions. Here, I tested the hypothesis that N mineralization from turnover of soil organic matter (SOM) regulates legume N fixation across 10 farms that spanned a gradient of SOM levels. I separated soil samples into two SOM fractions, based on size and density, which are indicators of soil nutrient cycling and N availability (free particulate organic matter and intra-aggregate particulate organic matter [POM]). This study indicates downregulation of legume N fixation in diversified agroecosystems with increasing N availability in intra-aggregate POM and increasing N mineralization. Intercropping the legume with a grass weakened the relationship between N in POM and N fixation due to N assimilation by the grass. Further, mean rates of N and C mineralization across sites increased with two seasons of a legume-grass cover crop mixture, which could enhance this stabilizing feedback between soil N availability and N fixation over time. These results suggest a potential mechanism for the diversity-ecosystem-function relationships measured in long-term studies of agroecosystems, in which regular use of legume cover crops increases total soil organic C and N and reduces negative environmental impacts of crop production.
农业集约化导致的氮(N)损失是全球变化的一个主要原因,这是由于硝酸盐(NO )的输出以及水生系统的富营养化,还有一氧化二氮(N O)排放到大气中。具有豆科覆盖作物的多样化农业生态系统将氮和碳(C)输入到土壤中,并减少氮污染,但需要确定在具有不同土壤条件的生态系统中控制豆科植物固氮的因素。在这里,我通过测试从土壤有机质(SOM)周转中矿化的 N 来检验假设,即横跨 SOM 水平梯度的 10 个农场调节豆科植物固氮。我根据大小和密度将土壤样本分为两个 SOM 部分,这两个部分是土壤养分循环和 N 有效性的指标(游离颗粒有机物和内聚颗粒有机物[POM])。这项研究表明,随着内聚 POM 中 N 可用性的增加和 N 矿化的增加,多样化农业生态系统中豆科植物固氮受到抑制。将豆科植物与草混种会削弱 POM 中 N 与固氮之间的关系,因为草会吸收 N。此外,随着豆科-草覆盖作物混种的两个季节,跨地点的 N 和 C 矿化平均速率增加,这可能会随着时间的推移增强土壤 N 有效性和固氮之间的这种稳定反馈。这些结果为长期农业生态系统研究中测量的多样性-生态系统-功能关系提供了一个潜在的机制,在这些研究中,定期使用豆科覆盖作物会增加土壤总有机 C 和 N,并减少作物生产的负面环境影响。