Suppr超能文献

光电效应加速了砷化镓晶圆上的电化学腐蚀和纳米压印过程。

Photoelectric effect accelerated electrochemical corrosion and nanoimprint processes on gallium arsenide wafers.

作者信息

Guo Chengxin, Zhang Lin, Sartin Matthew M, Han Lianhuan, Tian Zhao-Wu, Tian Zhong-Qun, Zhan Dongping

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) , Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Engineering Research Center of Electrochemical Technologies of Ministry of Education , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China . Email:

Department of Mechanical and Electrical Engineering , School of Aerospace Engineering , Xiamen University , Xiamen 361005 , China.

出版信息

Chem Sci. 2019 May 7;10(23):5893-5897. doi: 10.1039/c9sc01978b. eCollection 2019 Jun 21.

Abstract

Here we report photoelectric-effect-enhanced interfacial charge transfer reactions. The electrochemical corrosion rate of n-type gallium arsenide (n-GaAs) induced by the contact potential at platinum (Pt) and GaAs boundaries can be accelerated by the photoelectric effect of n-GaAs. When a GaAs wafer is illuminated with a xenon light source, the electrons in the valence band of GaAs will be excited to the conduction band and then move to the Pt boundaries due to the different work functions of the two materials. This results in an enhanced contact electric field as well as an enlarged Pt/GaAs contact potential. Consequently, in the presence of electrolyte solution, the polarizations of both the Pt/solution interface and the GaAs/solution interface at the Pt/GaAs/solution 3-phase boundary are enhanced. If the accumulated electrons on the Pt side are removed by electron acceptors in the solution, anodic corrosion of GaAs will be accelerated strictly along the Pt/GaAs/solution 3-phase boundary. This photo-enhanced electrochemical phenomenon can increase the corrosion rate of GaAs and accelerate the process of electrochemical nanoimprint lithography (ECNL) on GaAs. The method opens an innovative, highly efficient, low-cost nanoimprint technique performed directly on semiconductors, and it has prospective applications in the semiconductor industry.

摘要

在此,我们报道了光电效应增强的界面电荷转移反应。在铂(Pt)与砷化镓(GaAs)边界处的接触电势所引发的n型砷化镓(n-GaAs)的电化学腐蚀速率,可通过n-GaAs的光电效应而加快。当用氙光源照射GaAs晶片时,GaAs价带中的电子会被激发到导带,然后由于这两种材料的功函数不同而移动到Pt边界。这导致接触电场增强以及Pt/GaAs接触电势增大。因此,在存在电解质溶液的情况下,Pt/GaAs/溶液三相边界处的Pt/溶液界面和GaAs/溶液界面的极化都会增强。如果溶液中的电子受体去除了Pt一侧积累的电子,GaAs的阳极腐蚀将严格沿着Pt/GaAs/溶液三相边界加速。这种光增强的电化学现象会提高GaAs的腐蚀速率,并加速在GaAs上进行的电化学纳米压印光刻(ECNL)过程。该方法开创了一种直接在半导体上进行的创新、高效、低成本的纳米压印技术,并且在半导体工业中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f13/6566067/1330dcfca9dd/c9sc01978b-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验