Suppr超能文献

基于深度学习方法对脑积水患儿进行自动心室系统分割。

Automated Ventricular System Segmentation in Paediatric Patients Treated for Hydrocephalus Using Deep Learning Methods.

机构信息

Department of Radiology, Poznań University of Medical Sciences, Poznań, Poland.

Fast-Radiology, Poland.

出版信息

Biomed Res Int. 2019 Jul 7;2019:3059170. doi: 10.1155/2019/3059170. eCollection 2019.

Abstract

Hydrocephalus is a common neurological condition that can have traumatic ramifications and can be lethal without treatment. Nowadays, during therapy radiologists have to spend a vast amount of time assessing the volume of cerebrospinal fluid (CSF) by manual segmentation on Computed Tomography (CT) images. Further, some of the segmentations are prone to radiologist bias and high intraobserver variability. To improve this, researchers are exploring methods to automate the process, which would enable faster and more unbiased results. In this study, we propose the application of U-Net convolutional neural network in order to automatically segment CT brain scans for location of CSF. U-Net is a neural network that has proven to be successful for various interdisciplinary segmentation tasks. We optimised training using state of the art methods, including "1cycle" learning rate policy, transfer learning, generalized dice loss function, mixed float precision, self-attention, and data augmentation. Even though the study was performed using a limited amount of data (80 CT images), our experiment has shown near human-level performance. We managed to achieve a 0.917 mean dice score with 0.0352 standard deviation on cross validation across the training data and a 0.9506 mean dice score on a separate test set. To our knowledge, these results are better than any known method for CSF segmentation in hydrocephalic patients, and thus, it is promising for potential practical applications.

摘要

脑积水是一种常见的神经疾病,如果不治疗,可能会造成严重后果甚至致命。目前,在治疗过程中,放射科医生需要花费大量时间通过手动分割计算断层扫描(CT)图像中的脑脊液(CSF)体积。此外,一些分割结果容易受到放射科医生的主观偏见和观察者内变异性的影响。为了改进这一点,研究人员正在探索自动化处理的方法,这将使结果更快、更客观。在这项研究中,我们提出了应用 U-Net 卷积神经网络自动分割 CT 脑部扫描以定位 CSF。U-Net 是一种已经在各种跨学科分割任务中被证明是成功的神经网络。我们使用最先进的方法进行了训练优化,包括“1 周期”学习率策略、迁移学习、广义骰子损失函数、混合浮点精度、自注意力和数据增强。尽管该研究是使用有限数量的数据(80 个 CT 图像)进行的,但我们的实验表明,它的性能接近人类水平。我们在交叉验证中实现了 0.917 的平均骰子分数,标准偏差为 0.0352,在独立的测试集上实现了 0.9506 的平均骰子分数。据我们所知,这些结果优于任何已知的脑积水患者 CSF 分割方法,因此,它有望在实际应用中得到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0247/6642766/092526875c48/BMRI2019-3059170.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验