Suppr超能文献

探索 Cas9 HNH 结构域的替代催化机制。

Exploring alternative catalytic mechanisms of the Cas9 HNH domain.

机构信息

Department of Chemistry, University of Southern California, Los Angeles, California.

出版信息

Proteins. 2020 Feb;88(2):260-264. doi: 10.1002/prot.25796. Epub 2019 Sep 6.

Abstract

Understanding the reaction mechanism of CRISPR-associated protein 9 (Cas9) is crucial for the application of programmable gene editing. Despite the availability of the structures of Cas9 in apo- and substrate-bound forms, the catalytically active structure is still unclear. Our first attempt to explore the catalytic mechanism of Cas9 HNH domain has been based on the reasonable assumption that we are dealing with the same mechanism as endonuclease VII, including the assumption that the catalytic water is in the first shell of the Mg . Trying this mechanism with the cryo-EM structure forced us to induce significant structural change driven by the movement of K848 (or other positively charged residue) close to the active site to facilitate the proton transfer step. In the present study, we explore a second reaction mechanism where the catalytic water is in the second shell of the Mg and assume that the cryo-EM structure by itself is a suitable representation of a catalytic-ready structure. The alternative mechanism indicates that if the active water is from the second shell, then the calculated reaction barrier is lower compared with the corresponding barrier when the water comes from the first shell.

摘要

了解 CRISPR 相关蛋白 9 (Cas9) 的反应机制对于可编程基因编辑的应用至关重要。尽管 Cas9 的结构在无配体和底物结合形式下已经可用,但催化活性结构仍不清楚。我们首次尝试探索 Cas9 HNH 结构域的催化机制是基于这样一个合理的假设,即我们正在处理与内切核酸酶 VII 相同的机制,包括假设催化水处于 Mg 的第一壳层。尝试使用 cryo-EM 结构的这种机制迫使我们诱导由 K848(或其他带正电荷的残基)靠近活性位点的运动引起的显著结构变化,以促进质子转移步骤。在本研究中,我们探索了第二种反应机制,其中催化水处于 Mg 的第二壳层,并假设 cryo-EM 结构本身就是催化准备结构的合适表示。替代机制表明,如果活性水来自第二壳层,那么与水来自第一壳层的相应屏障相比,计算出的反应势垒较低。

相似文献

3
R-loop formation and conformational activation mechanisms of Cas9.R 环形成与 Cas9 的构象激活机制。
Nature. 2022 Sep;609(7925):191-196. doi: 10.1038/s41586-022-05114-0. Epub 2022 Aug 24.
7
Real-time observation of Cas9 postcatalytic domain motions.实时观察 Cas9 后催化结构域的运动。
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2010650118. Epub 2020 Dec 21.

引用本文的文献

3
Molecular basis of the reaction mechanism of the methyltransferase HENMT1.HENMT1 甲基转移酶反应机制的分子基础。
PLoS One. 2024 Jan 10;19(1):e0293243. doi: 10.1371/journal.pone.0293243. eCollection 2024.

本文引用的文献

4
CRISPR-Cas9 Structures and Mechanisms.CRISPR-Cas9 结构与机制。
Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30.
5
Multidimensional chemical control of CRISPR-Cas9.CRISPR-Cas9的多维化学控制
Nat Chem Biol. 2017 Jan;13(1):9-11. doi: 10.1038/nchembio.2224. Epub 2016 Oct 31.
6
CRISPR/Cas9 in Genome Editing and Beyond.CRISPR/Cas9 在基因组编辑及其他领域的应用
Annu Rev Biochem. 2016 Jun 2;85:227-64. doi: 10.1146/annurev-biochem-060815-014607. Epub 2016 Apr 25.
7
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.准备进行DNA切割的CRISPR-Cas9 R环复合物的结构。
Science. 2016 Feb 19;351(6275):867-71. doi: 10.1126/science.aad8282. Epub 2016 Jan 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验