Suppr超能文献

牛链球菌(一种瘤胃细菌)的全细胞和膜囊泡对中性氨基酸的钠依赖性转运。

Sodium-dependent transport of neutral amino acids by whole cells and membrane vesicles of Streptococcus bovis, a ruminal bacterium.

作者信息

Russell J B, Strobel H J, Driessen A J, Konings W N

机构信息

U.S. Department of Agriculture, Cornell University, Ithaca, New York 14853.

出版信息

J Bacteriol. 1988 Aug;170(8):3531-6. doi: 10.1128/jb.170.8.3531-3536.1988.

Abstract

Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2-deoxyglucose and incubated in sodium phosphate buffer were still able to transport serine, and this result indicated that the chemical sodium gradient was capable of driving transport. However, when the deenergized cells were treated with valinomycin and diluted into sodium phosphate to create both an artificial membrane potential and a chemical sodium gradient, rates of serine uptake were fivefold greater than in cells having only a sodium gradient. If deenergized cells were preloaded with sodium (no membrane potential or sodium gradient), there was little serine transport. Nigericin and monensin, ionophores capable of reversing sodium gradients across membranes, strongly inhibited sodium-dependent uptake of the three amino acids. Membrane vesicles loaded with potassium and diluted into either lithium or choline chloride were unable to transport serine, but rapid uptake was evident if sodium chloride was added to the assay mixture. Serine transport had an extremely poor affinity for sodium, and more than 30 mM was needed for half-maximal rates of uptake. Serine transport was inhibited by an excess of threonine, but an excess of alanine had little effect. Results indicated that S. bovis had separate sodium symport systems for serine or threonine and alanine, and either the membrane potential or chemical sodium gradient could drive uptake.

摘要

牛链球菌JB1细胞能够转运丝氨酸、苏氨酸或丙氨酸,但只有在钠缓冲液中孵育时才行。如果用磷酸钾洗涤经葡萄糖供能的细胞并悬浮于磷酸钾缓冲液中,则无法检测到摄取。用2-脱氧葡萄糖使细胞供能不足并在磷酸钠缓冲液中孵育的细胞仍能够转运丝氨酸,这一结果表明化学钠梯度能够驱动转运。然而,当供能不足的细胞用缬氨霉素处理并稀释到磷酸钠中以同时产生人工膜电位和化学钠梯度时,丝氨酸摄取速率比仅具有钠梯度的细胞高五倍。如果供能不足的细胞预先加载了钠(没有膜电位或钠梯度),则几乎没有丝氨酸转运。尼日利亚菌素和莫能菌素是能够逆转跨膜钠梯度的离子载体,它们强烈抑制三种氨基酸的钠依赖性摄取。装载了钾并稀释到氯化锂或氯化胆碱中的膜囊泡无法转运丝氨酸,但如果在测定混合物中加入氯化钠,则会有快速摄取。丝氨酸转运对钠的亲和力极低,半数最大摄取速率需要超过30 mM的钠。丝氨酸转运受到过量苏氨酸的抑制,但过量丙氨酸的影响很小。结果表明,牛链球菌具有用于丝氨酸或苏氨酸以及丙氨酸的独立钠同向转运系统,膜电位或化学钠梯度均可驱动摄取。

相似文献

3
Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
J Bacteriol. 1991 Jan;173(2):791-800. doi: 10.1128/jb.173.2.791-800.1991.
6
Effect of pH and Monensin on Glucose Transport by Fibrobacter succinogenes, a Cellulolytic Ruminal Bacterium.
Appl Environ Microbiol. 1992 Apr;58(4):1115-20. doi: 10.1128/aem.58.4.1115-1120.1992.
8
Non-proton-motive-force-dependent sodium efflux from the ruminal bacterium Streptococcus bovis: bound versus free pools.
Appl Environ Microbiol. 1989 Oct;55(10):2664-8. doi: 10.1128/aem.55.10.2664-2668.1989.
9
Active transport of alanine by thermostable membrane vesicles isolated from a thermophilic bacterium.
J Biochem. 1976 Jun;79(6):1157-66. doi: 10.1093/oxfordjournals.jbchem.a131171.
10
Sodium ion-driven serine/threonine transport in Porphyromonas gingivalis.
J Bacteriol. 2001 Jul;183(14):4142-8. doi: 10.1128/JB.183.14.4142-4148.2001.

引用本文的文献

1
Occurrence and Function of the Na-Translocating NADH:Quinone Oxidoreductase in spp.
Microorganisms. 2019 Apr 27;7(5):117. doi: 10.3390/microorganisms7050117.
2
Functionally cloned pdrM from Streptococcus pneumoniae encodes a Na(+) coupled multidrug efflux pump.
PLoS One. 2013;8(3):e59525. doi: 10.1371/journal.pone.0059525. Epub 2013 Mar 26.
3
Effect of pH and Monensin on Glucose Transport by Fibrobacter succinogenes, a Cellulolytic Ruminal Bacterium.
Appl Environ Microbiol. 1992 Apr;58(4):1115-20. doi: 10.1128/aem.58.4.1115-1120.1992.
4
Citrate Fermentation by Lactococcus and Leuconostoc spp.
Appl Environ Microbiol. 1991 Dec;57(12):3535-40. doi: 10.1128/aem.57.12.3535-3540.1991.
5
Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci.
Microbiol Mol Biol Rev. 1998 Dec;62(4):1021-45. doi: 10.1128/MMBR.62.4.1021-1045.1998.
6
Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems.
Appl Environ Microbiol. 1997 Feb;63(2):543-6. doi: 10.1128/aem.63.2.543-546.1997.
7
Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
Arch Microbiol. 1993;159(5):465-71. doi: 10.1007/BF00288595.
8
Identification and characterization of the proBA operon of Streptococcus bovis.
Appl Environ Microbiol. 1993 Feb;59(2):519-22. doi: 10.1128/aem.59.2.519-522.1993.
9
Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus.
Appl Environ Microbiol. 1993 Aug;59(8):2631-7. doi: 10.1128/aem.59.8.2631-2637.1993.
10
Electrogenic glutamine uptake by Peptostreptococcus anaerobius and generation of a transmembrane potential.
J Bacteriol. 1994 Mar;176(5):1303-8. doi: 10.1128/jb.176.5.1303-1308.1994.

本文引用的文献

1
A Phosphate-Bond-Driven Dipeptide Transport System in Streptococcus cremoris Is Regulated by the Internal pH.
Appl Environ Microbiol. 1987 Dec;53(12):2897-902. doi: 10.1128/aem.53.12.2897-2902.1987.
3
Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria.
Appl Environ Microbiol. 1979 Jul;38(1):72-7. doi: 10.1128/aem.38.1.72-77.1979.
4
Correlation of the vitamin requirements with cultural and biochemical characters of Lactobacillus spp.
J Gen Microbiol. 1961 Jul;25:473-82. doi: 10.1099/00221287-25-3-473.
5
Ammonium salts as a sole source of nitrogen for the growth of Streptococcus bovis.
J Bacteriol. 1959 Jul;78(1):147. doi: 10.1128/jb.78.1.147-147.1959.
7
Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
Appl Environ Microbiol. 1980 Mar;39(3):604-10. doi: 10.1128/aem.39.3.604-610.1980.
8
Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris.
J Bacteriol. 1982 Feb;149(2):733-8. doi: 10.1128/jb.149.2.733-738.1982.
9
Transport of alpha-aminoisobutyric acid by Streptococcus pyogenes and its derived L-form.
J Bacteriol. 1982 Jan;149(1):211-20. doi: 10.1128/jb.149.1.211-220.1982.
10
Periplasmic protein associated with the oligopeptide permeases of Salmonella typhimurium and Escherichia coli.
J Bacteriol. 1983 Sep;155(3):1434-8. doi: 10.1128/jb.155.3.1434-1438.1983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验