Suppr超能文献

化脓性链球菌及其衍生的L型菌对α-氨基异丁酸的转运

Transport of alpha-aminoisobutyric acid by Streptococcus pyogenes and its derived L-form.

作者信息

Reizer J, Panos C

出版信息

J Bacteriol. 1982 Jan;149(1):211-20. doi: 10.1128/jb.149.1.211-220.1982.

Abstract

We studied the uptake of alpha-aminoisobutyric acid (AIB) in Streptococcus pyogenes and its physiologically isotonic L-form. S. pyogenes cells starved for glucose or treated with carbonyl cyanide-m-chlorophenyl hydrazone accumulated limited amounts of AIB. A high apparent K(m) value characterized the glucose-independent transport of AIB. The rate and extent of AIB accumulation significantly increased in the presence of glucose. Two saturable transport components with distinct apparent K(m) values characterized glycolysis-coupled transport of AIB. A biphasic Lineweaver-Burk plot was also obtained for l-alanine transport by glycolyzing S. pyogenes cells. AIB seems to share a common transport system(s) with glycine, l- and d-alanine, l-serine, and l-valine. This was shown by the competitive inhibition of AIB uptake by these compounds and their ability to induce competitive exchange efflux of accumulated AIB. About 30% of the AIB uptake was not inhibited by a saturating amount of l-valine, indicating the existence of more than one system for AIB transport. p-Chloromercuribenzoate markedly inhibited the accumulation of AIB by both glycolyzing and glucose-starved cells. In contrast, carbonyl cyanide-m-chlorophenyl hydrazone affected only metabolism-dependent uptake of AIB, which was also sensitive to dinitrophenol, N-ethylmaleimide, iodoacetate, fluoride (NaF), arsenate, and N,N'-dicyclohexylcarbodiimide. These results are interpreted according to the chemiosmotic theory of Mitchell, whereby a proton motive force constitutes the driving force for AIB accumulation. AIB was not accumulated by the L-form. However, a temporary accumulation of AIB by a counterflow mechanism and a saturable system with a low apparent affinity were demonstrated for AIB transport by this organism. We suggest that a deficiency in the coupling of energy to AIB transport is responsible for the apparent lack of active AIB accumulation by the L-form.

摘要

我们研究了化脓性链球菌及其生理等渗L型菌对α-氨基异丁酸(AIB)的摄取。缺乏葡萄糖或用羰基氰化物-间氯苯腙处理的化脓性链球菌细胞积累的AIB量有限。高表观K(m)值是AIB非葡萄糖依赖性转运的特征。在有葡萄糖存在的情况下,AIB积累的速率和程度显著增加。两个具有不同表观K(m)值的可饱和转运成分是AIB糖酵解偶联转运的特征。通过糖酵解的化脓性链球菌细胞转运L-丙氨酸也得到了双相Lineweaver-Burk图。AIB似乎与甘氨酸、L-和D-丙氨酸、L-丝氨酸和L-缬氨酸共享一个共同的转运系统。这些化合物对AIB摄取的竞争性抑制以及它们诱导积累的AIB竞争性交换流出的能力证明了这一点。高达饱和量的L-缬氨酸对约30%的AIB摄取没有抑制作用,表明存在不止一种AIB转运系统。对氯汞苯甲酸显著抑制了糖酵解细胞和缺乏葡萄糖的细胞对AIB的积累。相比之下,羰基氰化物-间氯苯腙仅影响AIB的代谢依赖性摄取,而AIB的代谢依赖性摄取对二硝基苯酚、N-乙基马来酰亚胺、碘乙酸、氟化物(NaF)、砷酸盐和N,N'-二环己基碳二亚胺也敏感。这些结果根据米切尔的化学渗透理论进行解释,即质子动力是AIB积累的驱动力。L型菌不积累AIB。然而,通过逆流机制和具有低表观亲和力的可饱和系统,该生物体对AIB转运表现出AIB的暂时积累。我们认为能量与AIB转运偶联的缺陷是L型菌明显缺乏AIB主动积累的原因。

相似文献

1
Transport of alpha-aminoisobutyric acid by Streptococcus pyogenes and its derived L-form.
J Bacteriol. 1982 Jan;149(1):211-20. doi: 10.1128/jb.149.1.211-220.1982.
3
Properties of alpha-aminoisobutyric acid transport in a thermophilic microorganism.
J Bacteriol. 1974 May;118(2):414-24. doi: 10.1128/jb.118.2.414-424.1974.
4
Characteristics of an uptake system for alpha-aminoisobutyric acid in Leishmania tropica promastigotes.
J Protozool. 1983 Feb;30(1):41-6. doi: 10.1111/j.1550-7408.1983.tb01030.x.
5
Binding-protein-dependent alanine transport in Rhodobacter sphaeroides is regulated by the internal pH.
J Bacteriol. 1989 Sep;171(9):5148-54. doi: 10.1128/jb.171.9.5148-5154.1989.
8
Energization of glucose transport by Pseudomonas fluorescens.
J Bacteriol. 1980 Jun;142(3):755-62. doi: 10.1128/jb.142.3.755-762.1980.
9
Transport of neutral amino acids by adult articular cartilage.
Connect Tissue Res. 1983;11(4):321-30. doi: 10.3109/03008208309004864.
10
Sodium ion-stimulated alpha-[1-14C]aminoisobutyric acid uptake in alkalophilic Bacillus species.
J Bacteriol. 1977 Sep;131(3):784-8. doi: 10.1128/jb.131.3.784-788.1977.

引用本文的文献

1
Regulation and consequence of serine catabolism in Streptococcus pyogenes.
J Bacteriol. 2011 Apr;193(8):2002-12. doi: 10.1128/JB.01516-10. Epub 2011 Feb 11.
2
Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci.
Microbiol Mol Biol Rev. 1998 Dec;62(4):1021-45. doi: 10.1128/MMBR.62.4.1021-1045.1998.
6
Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP.
J Bacteriol. 1983 Oct;156(1):354-61. doi: 10.1128/jb.156.1.354-361.1983.
7
Regulation of beta-galactoside transport and accumulation in heterofermentative lactic acid bacteria.
J Bacteriol. 1987 Dec;169(12):5589-96. doi: 10.1128/jb.169.12.5589-5596.1987.
8
Mechanism and regulation of phosphate transport in Streptococcus pyogenes.
J Bacteriol. 1987 Jan;169(1):297-302. doi: 10.1128/jb.169.1.297-302.1987.
10
Ornithine transport and exchange in Streptococcus lactis.
J Bacteriol. 1987 Sep;169(9):4147-53. doi: 10.1128/jb.169.9.4147-4153.1987.

本文引用的文献

1
STREPTOCOCCAL L-FORMS IV. : Comparison of the Metabolic Rates of a Streptococcus and Derived L-Form.
J Bacteriol. 1962 Nov;84(5):921-8. doi: 10.1128/jb.84.5.921-928.1962.
2
An amino acid transport system in Streptococcus faecium.
Arch Biochem Biophys. 1962 Aug;98:183-90. doi: 10.1016/0003-9861(62)90171-6.
3
Regulation of beta-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism.
Proc Natl Acad Sci U S A. 1980 Sep;77(9):5497-501. doi: 10.1073/pnas.77.9.5497.
6
Properties of the glutamate transport system in Escherichia coli.
J Bacteriol. 1967 Mar;93(3):1009-16. doi: 10.1128/jb.93.3.1009-1016.1967.
8
Membrane lipid composition of Streptococcus pyogenes and derived L form.
Biochemistry. 1966 Jul;5(7):2385-92. doi: 10.1021/bi00871a031.
9
Analysis of Michaelis kinetics for two independent, saturable membrane transport functions.
J Theor Biol. 1972 Apr;35(1):113-8. doi: 10.1016/0022-5193(72)90196-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验