Diabetes and Islet Biology Group, National Health and Medical Research Council (NHMRC) Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.
Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
JCI Insight. 2019 Jul 30;5(16):129299. doi: 10.1172/jci.insight.129299.
Human islet isolation is a cost-/resource-intensive program generating islets for cell therapy in Type 1 diabetes. However, only a third of cadaveric pancreas get to clinical transplantation due to low quality/number of islets. There is a need to identify biomarker(s) that predict the quality of islets, prior to initiating their isolation. Here, we sequenced transcriptome from 18 human islet preparations stratified into three groups (Gr.1: Best quality/transplantable islets, Gr.2: Intermediary quality, Gr.3: Inferior quality/non-transplantable islets) based on routine measurements including islet purity/viability. Machine-learning algorithms involving penalized regression analyses identified 10 long-non-coding(lnc)RNAs significantly different across all group-wise comparisons (Gr1VsGr2, Gr2vsGr3, Gr1vsGr3). Two variants of Metastasis-Associated Lung Adenocarcinoma Transcript-1(MALAT1) lncRNA were common across all comparisons. We confirmed RNA-seq findings in a "validation set" of 75 human islet preparations. Finally, in 19 pancreas samples, we demonstrate that assessing the levels of MALAT1 variants alone (ROC curve AUC: 0.83) offers highest specificity in predicting post-isolation islet quality and improves the predictive potential for clinical islet transplantation when combined with Edmonton Donor Points/Body Mass Index(BMI)/North American Islet Donor Score(NAIDS). We present this resource of islet-quality-stratified lncRNA transcriptome data and identify MALAT1 as a biomarker that significantly enhances current selection methods for clinical (GMP)-grade islet isolation.
人类胰岛分离是一个成本/资源密集型的项目,为 1 型糖尿病的细胞治疗生成胰岛。然而,由于胰岛的质量/数量低,只有三分之一的尸体胰腺能够进行临床移植。需要确定在开始分离之前可以预测胰岛质量的生物标志物。在这里,我们根据胰岛纯度/活力等常规测量结果,将 18 个人胰岛制剂分为三组(Gr.1:质量最好/可移植的胰岛,Gr.2:中等质量,Gr.3:质量差/不可移植的胰岛)进行转录组测序。涉及惩罚回归分析的机器学习算法在所有组间比较(Gr1VsGr2、Gr2vsGr3、Gr1vsGr3)中确定了 10 个长非编码(lnc)RNA 显著不同。MALAT1 长非编码 RNA 的两种变体在所有比较中都很常见。我们在 75 个人胰岛制剂的“验证集”中证实了 RNA-seq 的发现。最后,在 19 个胰腺样本中,我们证明仅评估 MALAT1 变体的水平(ROC 曲线 AUC:0.83)在预测胰岛分离后质量方面具有最高的特异性,并当与埃德蒙顿供体点/体重指数(BMI)/北美胰岛供体评分(NAIDS)结合使用时,提高了临床胰岛移植的预测潜力。我们提出了这种胰岛质量分层 lncRNA 转录组数据资源,并确定 MALAT1 是一种生物标志物,可显著增强当前用于临床(GMP)级胰岛分离的选择方法。