Suppr超能文献

一种绿色化学方法制备氧化铁-壳聚糖纳米复合材料(CS-IONC),用于增强生物修复和药物治疗活性-针对耐药病原体和恶性生长的超分子纳米制剂。

A green chemistry to produce iron oxide - Chitosan nanocomposite (CS-IONC) for the upgraded bio-restorative and pharmacotherapeutic activities - Supra molecular nanoformulation against drug-resistant pathogens and malignant growth.

机构信息

C-Bird (Centre of Bioresource Research and Development), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India.

C-Bird (Centre of Bioresource Research and Development), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India.

出版信息

Int J Biol Macromol. 2019 Oct 1;138:1109-1129. doi: 10.1016/j.ijbiomac.2019.07.158. Epub 2019 Jul 27.

Abstract

The logical research on fundamentally adjusted iron oxide nanoparticles has turned out to expanded in biomedicine because of the improved activity and best biocompatibility. In this present work upgraded bio-restorative and pharmacotherapeutic property of chitosan‑iron oxide nanocomposite, which was set up by eco-friendly in situ substance technique. Characterisation of the synthesised nanocomposite by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction,(XRD) and Vibrating test magnetometer (VSM) studies reveals that highly stable spherical, electron-dense core shelled rough particles of 50-60 nm. Particle morphology of the synthesised nanocomposite utilising scanning electron microscopy (SEM) uncovers spherical; thick electron centre shelled harsh particles with the size scope of 50-60 nm. FTIR studies show that the specific interaction of practical gatherings of chitosan with iron oxide nanoparticles. Crystalline phase and magnetisation impact of the composite resolved from XRD and VSM studies. Anti-bacterial activity of the nanocomposite examined against human bacterial pathogens which suggest that the readied nanocomposite successfully restrained the development of the tried bacterial strains by recording maximum zone of inhibition, least minimum inhibition concentration (MIC) and biofilm damage against the both tested strains. 100 μg dosages of nanocomposites recorded 20.0 and 21.0 mm of the zone of inhibition against E. coli and S. aureus respectively. Biofilm restraint was additionally observed to be high in nanocomposite treatment by recording lower optical density of ethanol solubilised biofilm of both tested strains. Anticancer activity was examined against the A549 cell line by the assurance of cell feasibility as opposed to oxidative proteins, articulation example of TNF-α, Bax, PARP qualities and apoptosis. Composite prompted 50% of cytotoxicity at 80 μg/mL unmistakably uncovers cytotoxicity against A549 cells. Nanocomposite treatment revealed a high decrease of cell feasibility at all the fixation and most extreme impact seen in 100 μg. Nanocomposite treated cells demonstrated striking changes in cell morphology, the build-up of atomic material related to trademark changes in against oxidative enzymes, quality articulation design which brought about apoptosis-like necrotic cell death. The present findings would propose the conceivable usage of chitosan‑iron oxide nanocomposite as a viable remedial against safe medication pathogens and malignant growth cells.

摘要

经过一系列逻辑研究,基本调整后的氧化铁纳米粒子在生物医学领域的应用得到了扩展,因为其具有更高的活性和更好的生物相容性。在这项工作中,通过环保的原位合成技术,提高了壳聚糖-氧化铁纳米复合材料的生物修复和药物治疗性能。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)和振动样品磁强计(VSM)研究对合成的纳米复合材料进行了表征,结果表明,该纳米复合材料具有高度稳定的球形、电子密集的核壳粗糙颗粒,粒径为 50-60nm。利用扫描电子显微镜(SEM)对合成的纳米复合材料的颗粒形态进行了研究,结果表明,该纳米复合材料具有球形、电子密集的核壳粗糙颗粒,粒径为 50-60nm。FTIR 研究表明,壳聚糖与氧化铁纳米粒子的实际团聚体之间存在特定的相互作用。通过 XRD 和 VSM 研究确定了复合材料的结晶相和磁化强度的影响。对纳米复合材料进行了抗细菌活性测试,以对抗人类细菌病原体,结果表明,所制备的纳米复合材料通过记录最大抑菌圈、最小最小抑菌浓度(MIC)和对两种测试菌株的生物膜破坏,成功抑制了试验菌株的生长。100μg 剂量的纳米复合材料对大肠杆菌和金黄色葡萄球菌的抑菌圈分别为 20.0 和 21.0mm。通过记录两种测试菌株乙醇溶解生物膜的光密度较低,还观察到纳米复合材料处理对生物膜的抑制作用较高。通过氧化蛋白、TNF-α、Bax、PARP 表达水平和细胞凋亡的测定,对 A549 细胞系进行了抗癌活性检测。在 80μg/mL 时,复合物体明显表现出 50%的细胞毒性,表明对 A549 细胞具有细胞毒性。纳米复合材料处理在所有固定浓度下均显示出细胞活力的显著降低,在 100μg 时达到最大影响。纳米复合材料处理的细胞表现出明显的细胞形态变化,与氧化酶、基因表达谱变化相关的核物质积累导致类似凋亡的坏死性细胞死亡。这些发现表明,壳聚糖-氧化铁纳米复合材料作为一种有效的治疗安全药物病原体和恶性肿瘤细胞的方法具有潜在的应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验