利用枯草芽孢杆菌 ATCC 6633 单独或固定在大孔 cryogel 中合成的 CS/GO/ZnO 纳米复合材料的抗菌活性和重金属纳米修复作用。

Antimicrobial activity and nanoremediation of heavy metals using biosynthesized CS/GO/ZnO nanocomposite by Bacillus subtilis ATCC 6633 alone or immobilized in a macroporous cryogel.

机构信息

Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.

出版信息

Microb Cell Fact. 2024 Oct 15;23(1):278. doi: 10.1186/s12934-024-02535-6.

Abstract

BACKGROUND

The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health.

RESULTS

The present study highlighted a simple and cost-effective approach to biosynthesize a chitosan/graphene oxide/zinc oxide nanocomposite (CS/GO/ZnO) alone and immobilized in a macroporous cryogel as a new antimicrobial agent. Bacillus subtilis ATCC 6633 was used as a safe and efficient bio-nano-factory during biosynthesis. The formation of CS/GO/ZnO was confirmed and characterized using different analyses including ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), selective area diffraction pattern (SADP), Zeta analyses, scanning electron microscope (SEM) and transmission electron microscopy (TEM). GO combined with ZnO NPs successfully and displayed an adsorption peak at 358 nm. The XRD results showed the crystalline composition of the loaded ZnO NPs on GO sheets. FTIR spectrum confirmed the presence of proteins during the synthesis which act as stabilizing and capping agents. The nanocomposite has a high negative surface charge (-32.8 ± 5.7 mV) which increases its stability. SEM and TEM showing the size of biosynthesized ZnO-NPs was in the range of 40-50 nm. The CS/GO/ZnO alone or immobilized in cryogel revealed good antimicrobial activities against B. cereus ATCC 14,579, Escherichia coli ATCC 25,922, and Candida albicans ATCC 10,231 in a dose-dependent manner. The CS/GO/ZnO cryogel revealed higher antimicrobial activity than GO/ZnO nanocomposite and standard antibiotics (amoxicillin and miconazole) with inhibition zones averages of 24.33 ± 0.12, 15.67 ± 0.03, and 17.5 ± 0.49 mm, respectively. The MIC values of the prepared nanocomposite against B. cereus, E. coli, and C. albicans were 80, 80, and 90 µg/ml compared to standard drugs (90, 120 and 150 µg/ml, respectively). According to the TEM ultrastructure studies of nanocomposite-treated microbes, treated cells had severe deformities and morphological alterations compared to the untreated cells including cell wall distortion, the separation between the cell wall and plasma membrane, vacuoles formation moreover complete cell lyses were also noted. In the cytotoxicity test of CS/GO/ZnO alone and its cryogel, there was a significant reduction (p˂0.05) in cell viability of WI-38 normal lung cell line after the concentration of 209 and 164 µg/ml, respectively. It showed the low toxic effect of the nanocomposite and its cryogel on the WI-38 line which implies its safety. In addition, water treatment with the CS/GO/ZnO cryogel decreased turbidity (0.58 NTU), total coliform (2 CFU/100 ml), fecal coliform (1 CFU/100 ml), fecal Streptococcus (2 CFU/100 ml), and heterotrophic plate counts (53 CFU/1 ml) not only in comparison with the chlorine-treated samples (1.69 NTU, 4 CFU/100 ml, 6 CFU/100 ml, 57 CFU/100 ml, and 140 CFU/1 ml, respectively) but also with the raw water samples (6.9 NTU, 10800 CFU/100 ml, 660 CFU/100 ml, 800 CFU/100 ml, and 4400 CFU/1 ml, respectively). Moreover, cryogel significantly decreased the concentration of different heavy metals, especially cobalt compared to chlorine (0.004 ppm, 0.002 ppm, and 0.001 ppm for raw water, chlorine-treated, and cryogel-treated groups, respectively) which helped in the reduction of their toxic effects.

CONCLUSION

This study provides an effective, promising, safe, and alternative nanocomposite to treat different human and animal pathogenic microbes that might be used in different environmental, industrial, and medical applications.

摘要

背景

世界社会仍深受水源性感染的困扰,发展中国家承受着大部分发病率和死亡率的负担,尤其是幼儿。此外,微生物耐药性是最普遍的全球性问题之一,这延长了自我用药和治疗期的需求,或者可能与治疗失败有关,导致进一步住院、更高的医疗费用和更高的死亡率。因此,需要创新合成新的抗菌材料来保护环境和增进人类健康。

结果

本研究强调了一种简单且经济有效的方法,可单独生物合成壳聚糖/氧化石墨烯/氧化锌纳米复合材料(CS/GO/ZnO)并将其固定在大孔冷冻凝胶中作为新型抗菌剂。枯草芽孢杆菌 ATCC 6633 被用作生物纳米工厂,在生物合成过程中安全且高效。通过使用不同的分析方法,包括紫外可见光谱(UV-Vis)、X 射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、选区衍射图案(SADP)、Zeta 分析、扫描电子显微镜(SEM)和透射电子显微镜(TEM),对 CS/GO/ZnO 的形成进行了确认和表征。GO 与 ZnO NPs 成功结合,并在 358nm 处显示出一个吸收峰。XRD 结果表明,负载在 GO 片上的 ZnO NPs 具有晶态组成。FTIR 光谱证实了在合成过程中存在蛋白质,它们起到稳定和封端剂的作用。纳米复合材料具有高负表面电荷(-32.8±5.7 mV),这增加了其稳定性。SEM 和 TEM 显示,生物合成的 ZnO-NPs 的尺寸在 40-50nm 范围内。CS/GO/ZnO 单独或固定在冷冻凝胶中对蜡状芽孢杆菌 ATCC 14579、大肠杆菌 ATCC 25922 和白色念珠菌 ATCC 10231 均具有良好的抗菌活性,呈剂量依赖性。CS/GO/ZnO 冷冻凝胶的抗菌活性高于 GO/ZnO 纳米复合材料和标准抗生素(阿莫西林和咪康唑),抑菌圈平均直径分别为 24.33±0.12、15.67±0.03 和 17.5±0.49mm。与标准药物(分别为 90、120 和 150μg/ml)相比,制备的纳米复合材料对蜡状芽孢杆菌、大肠杆菌和白色念珠菌的 MIC 值分别为 80、80 和 90μg/ml。根据纳米复合材料处理微生物的 TEM 超微结构研究,与未处理的细胞相比,处理过的细胞具有严重的变形和形态改变,包括细胞壁扭曲、细胞壁和质膜分离、空泡形成,甚至完全细胞溶解。在 CS/GO/ZnO 单独及其冷冻凝胶的细胞毒性试验中,浓度分别为 209μg/ml 和 164μg/ml 时,WI-38 正常肺细胞系的细胞活力显著降低(p˂0.05)。这表明纳米复合材料及其冷冻凝胶对 WI-38 细胞系的毒性较低,这意味着其安全性。此外,用 CS/GO/ZnO 冷冻凝胶处理水可降低浊度(0.58 NTU)、总大肠菌群(2 CFU/100ml)、粪大肠菌群(1 CFU/100ml)、粪链球菌(2 CFU/100ml)和异养平板计数(53 CFU/1ml),不仅与氯处理的样品(1.69 NTU、4 CFU/100ml、6 CFU/100ml、57 CFU/100ml 和 140 CFU/1ml)相比,而且与原水样品(6.9 NTU、10800 CFU/100ml、660 CFU/100ml、800 CFU/100ml 和 4400 CFU/1ml)相比。此外,冷冻凝胶显著降低了不同重金属的浓度,尤其是钴,与氯相比(原水、氯处理和冷冻凝胶处理组分别为 0.004ppm、0.002ppm 和 0.001ppm),这有助于降低其毒性。

结论

本研究提供了一种有效、有前途、安全和替代的纳米复合材料,可用于治疗不同的人类和动物致病性微生物,可用于不同的环境、工业和医疗应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6baa/11475717/8a12814b74bb/12934_2024_2535_Fig1_HTML.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索