Marchi Jacopo, Lässig Michael, Mora Thierry, Walczak Aleksandra M
Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France.
Institute of Theoretical Physics, University of Cologne, 50937 Cologne, Germany.
Pathogens. 2019 Jul 29;8(3):115. doi: 10.3390/pathogens8030115.
Viruses evolve in the background of host immune systems that exert selective pressure and drive viral evolutionary trajectories. This interaction leads to different evolutionary patterns in antigenic space. Examples observed in nature include the effectively one-dimensional escape characteristic of influenza A and the prolonged coexistence of lineages in influenza B. Here, we use an evolutionary model for viruses in the presence of immune host systems with finite memory to obtain a phase diagram of evolutionary patterns in a two-dimensional antigenic space. We find that, for small effective mutation rates and mutation jump ranges, a single lineage is the only stable solution. Large effective mutation rates combined with large mutational jumps in antigenic space lead to multiple stably co-existing lineages over prolonged evolutionary periods. These results combined with observations from data constrain the parameter regimes for the adaptation of viruses, including influenza.
病毒在宿主免疫系统的背景下进化,宿主免疫系统施加选择压力并驱动病毒的进化轨迹。这种相互作用导致抗原空间中出现不同的进化模式。自然界中观察到的例子包括甲型流感有效的一维逃逸特征以及乙型流感谱系的长期共存。在这里,我们使用一个存在具有有限记忆的免疫宿主系统时病毒的进化模型,以获得二维抗原空间中进化模式的相图。我们发现,对于小的有效突变率和突变跳跃范围,单一谱系是唯一的稳定解。抗原空间中较大的有效突变率与较大的突变跳跃相结合,会导致在长时间的进化过程中多个谱系稳定共存。这些结果与数据观察相结合,限制了包括流感在内的病毒适应的参数范围。