Department of Engineering, James Madison University, Harrisonburg, VA, USA.
Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Integr Biol (Camb). 2019 Jun 1;11(6):280-292. doi: 10.1093/intbio/zyz023.
We used particle-based computer simulations to study the emergent properties of the actomyosin cytoskeleton. Our model accounted for biophysical interactions between filamentous actin and non-muscle myosin II and was motivated by recent experiments demonstrating that spatial regulation of myosin activity is required for fibroblasts responding to spatial gradients of platelet derived growth factor (PDGF) to undergo chemotaxis. Our simulations revealed the spontaneous formation of actin asters, consistent with the punctate actin structures observed in chemotacting fibroblasts. We performed a systematic analysis of model parameters to identify biochemical steps in myosin activity that significantly affect aster formation and performed simulations in which model parameter values vary spatially to investigate how the model responds to chemical gradients. Interestingly, spatial variations in motor stiffness generated time-dependent behavior of the actomyosin network, in which actin asters continued to spontaneously form and dissociate in different regions of the gradient. Our results should serve as a guide for future experimental investigations.
我们使用基于粒子的计算机模拟来研究肌动球蛋白细胞骨架的涌现特性。我们的模型考虑了丝状肌动蛋白和非肌肉肌球蛋白 II 之间的生物物理相互作用,这是受到最近的实验的启发,这些实验表明,空间调节肌球蛋白的活性对于成纤维细胞响应血小板衍生生长因子 (PDGF) 的空间梯度以进行趋化作用是必需的。我们的模拟揭示了肌动球蛋白的自发形成,这与趋化性成纤维细胞中观察到的点状肌动蛋白结构一致。我们对模型参数进行了系统分析,以确定肌球蛋白活性的生化步骤,这些步骤显著影响了星爆的形成,并进行了模型参数值在空间上变化的模拟,以研究模型如何响应化学梯度。有趣的是,马达硬度的空间变化导致肌动球蛋白网络的时变行为,其中肌动球蛋白星爆在梯度的不同区域继续自发形成和分解。我们的结果应该为未来的实验研究提供指导。