Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II,80131 Naples, Italy.
Cells. 2019 Jul 30;8(8):798. doi: 10.3390/cells8080798.
Cancer has been considered, for a long time, a genetic disease where mutations in keyregulatory genes drive tumor initiation, growth, metastasis, and drug resistance. Instead, theadvent of high-throughput technologies has revolutionized cancer research, allowing to investigatemolecular alterations at multiple levels, including genome, epigenome, transcriptome, proteome,and metabolome and showing the multifaceted aspects of this disease. The multi-omics approachesrevealed an intricate molecular landscape where different cellular functions are interconnected andcooperatively contribute to shaping the malignant phenotype. Recent evidence has brought to lighthow metabolism and epigenetics are highly intertwined, and their aberrant crosstalk can contributeto tumorigenesis. The oncogene-driven metabolic plasticity of tumor cells supports the energeticand anabolic demands of proliferative tumor programs and secondary can alter the epigeneticlandscape via modulating the production and/or the activity of epigenetic metabolites. Conversely,epigenetic mechanisms can regulate the expression of metabolic genes, thereby altering themetabolome, eliciting adaptive responses to rapidly changing environmental conditions, andsustaining malignant cell survival and progression in hostile niches. Thus, cancer cells takeadvantage of the epigenetics-metabolism crosstalk to acquire aggressive traits, promote cellproliferation, metastasis, and pluripotency, and shape tumor microenvironment. Understandingthis bidirectional relationship is crucial to identify potential novel molecular targets for theimplementation of robust anti-cancer therapeutic strategies.
长期以来,癌症一直被认为是一种遗传疾病,其关键调控基因的突变会驱动肿瘤的起始、生长、转移和耐药性。相反,高通量技术的出现彻底改变了癌症研究,使人们能够在多个层面上研究分子变化,包括基因组、表观基因组、转录组、蛋白质组和代谢组,并揭示了这种疾病的多面性。多组学方法揭示了一个复杂的分子景观,其中不同的细胞功能相互关联,并协同作用于塑造恶性表型。最近的证据表明,代谢和表观遗传学是如何高度交织的,它们的异常相互作用可能有助于肿瘤发生。肿瘤细胞的癌基因驱动的代谢可塑性支持增殖性肿瘤程序的能量和合成代谢需求,并且可以通过调节表观遗传代谢物的产生和/或活性来改变表观遗传景观。相反,表观遗传机制可以调节代谢基因的表达,从而改变代谢组,引发对快速变化的环境条件的适应性反应,并在恶劣的微环境中维持恶性细胞的存活和进展。因此,癌细胞利用表观遗传学-代谢的相互作用来获得侵袭性特征,促进细胞增殖、转移和多能性,并塑造肿瘤微环境。了解这种双向关系对于确定潜在的新分子靶点以实施强大的抗癌治疗策略至关重要。