Toronto Joint Department of Medical Imaging, Toronto General Hospital, University of Toronto, 585 University Avenue, 1PMB-298, Toronto, ON, M5G 2N2, Canada.
Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, M5G 2N2, Canada.
J Cardiovasc Magn Reson. 2019 Aug 1;21(1):45. doi: 10.1186/s12968-019-0557-0.
Cardiac involvement is common and is the leading cause of mortality in Fabry disease (FD). We explored the association between cardiovascular magnetic resonance (CMR) myocardial strain, T1 mapping, late gadolinium enhancement (LGE) and left ventricular hypertrophy (LVH) in patients with FD.
In this prospective study, 38 FD patients (45.0 ± 14.5 years, 37% male) and 8 healthy controls (40.1 ± 13.7 years, 63% male) underwent 3 T CMR including cine balanced steady-state free precession (bSSFP), LGE and modified Look-Locker Inversion recovery (MOLLI) T1 mapping. Global longitudinal (GLS) and circumferential (GCS) strain and base-to-apex longitudinal strain (LS) and circumferential strain (CS) gradients were derived from cine bSSFP images using feature tracking analysis.
Among FD patients, 8 had LVH (FD LVH+, 21%) and 17 had LGE (FD LGE+, 45%). Nineteen FD patients (50%) had neither LVH nor LGE (FD LVH- LGE-). None of the healthy controls had LVH or LGE. FD patients and healthy controls did not differ significantly with respect to GLS (- 15.3 ± 3.5% vs. - 16.3 ± 1.5%, p = 0.45), GCS (- 19.4 ± 3.0% vs. -19.5 ± 2.9%, p = 0.84) or base-to-apex LS gradient (7.5 ± 3.8% vs. 9.3 ± 3.5%, p = 0.24). FD patients had significantly lower base-to-apex CS gradient (2.1 ± 3.7% vs. 6.5 ± 2.2%, p = 0.002) and native T1 (1170.2 ± 37.5 ms vs. 1239.0 ± 18.0 ms, p < 0.001). Base-to-apex CS gradient differentiated FD LVH- LGE- patients from healthy controls (OR 0.42, 95% CI: 0.20 to 0.86, p = 0.019), even after controlling for native T1 (OR 0.24, 95% CI: 0.06 to 0.99, p = 0.049). In a nested logistic regression model with native T1, model fit was significantly improved by the addition of base-to-apex CS gradient (χ(df = 1) = 11.04, p < 0.001). Intra- and inter-observer agreement were moderate to good for myocardial strain parameters: GLS (ICC 0.849 and 0.774, respectively), GCS (ICC 0.831 and 0.833, respectively), and base-to-apex CS gradient (ICC 0.737 and 0.613, respectively).
CMR reproducibly identifies myocardial strain abnormalities in FD. Loss of base-to-apex CS gradient may be an early marker of cardiac involvement in FD, with independent and incremental value beyond native T1.
心脏受累在法布里病(FD)中很常见,也是导致死亡率的主要原因。我们探讨了 3T 心脏磁共振(CMR)心肌应变、T1 mapping、晚期钆增强(LGE)与左心室肥厚(LVH)在 FD 患者中的相关性。
前瞻性研究纳入 38 例 FD 患者(45.0±14.5 岁,37%为男性)和 8 名健康对照(40.1±13.7 岁,63%为男性),行 3T CMR 检查,包括电影平衡稳态自由进动(bSSFP)、LGE 和改良 Look-Locker 反转恢复(MOLLI)T1 mapping。应用特征跟踪分析从电影 bSSFP 图像中得出整体纵向应变(GLS)和周向应变(GCS)、基底至心尖纵向应变(LS)和周向应变(CS)梯度。
FD 患者中,8 例存在 LVH(FD LVH+,21%),17 例存在 LGE(FD LGE+,45%)。19 例 FD 患者(50%)既无 LVH 也无 LGE(FD LVH- LGE-)。健康对照组中无 LVH 或 LGE。FD 患者和健康对照组的 GLS(-15.3±3.5%比-16.3±1.5%,p=0.45)、GCS(-19.4±3.0%比-19.5±2.9%,p=0.84)或基底至心尖 LS 梯度(7.5±3.8%比 9.3±3.5%,p=0.24)差异无统计学意义。FD 患者基底至心尖 CS 梯度显著较低(2.1±3.7%比 6.5±2.2%,p=0.002),且本征 T1 值较低(1170.2±37.5ms 比 1239.0±18.0ms,p<0.001)。基底至心尖 CS 梯度可将 FD LVH- LGE-患者与健康对照组区分开来(OR 0.42,95%CI:0.20 至 0.86,p=0.019),即使在校正本征 T1 值后(OR 0.24,95%CI:0.06 至 0.99,p=0.049)。在包含本征 T1 的嵌套逻辑回归模型中,加入基底至心尖 CS 梯度后,模型拟合度显著提高(χ(df=1)=11.04,p<0.001)。心肌应变参数的观察者内和观察者间一致性均为中度至高度:GLS(ICC 0.849 和 0.774)、GCS(ICC 0.831 和 0.833)和基底至心尖 CS 梯度(ICC 0.737 和 0.613)。
CMR 可重复性地识别 FD 患者的心肌应变异常。基底至心尖 CS 梯度的缺失可能是 FD 患者心脏受累的早期标志物,其独立于本征 T1,具有额外的增量价值。