Suppr超能文献

细菌中糖原代谢的结构基础。

Structural basis of glycogen metabolism in bacteria.

机构信息

Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain

Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.

出版信息

Biochem J. 2019 Jul 31;476(14):2059-2092. doi: 10.1042/BCJ20170558.

Abstract

The evolution of metabolic pathways is a major force behind natural selection. In the spotlight of such process lies the structural evolution of the enzymatic machinery responsible for the central energy metabolism. Specifically, glycogen metabolism has emerged to allow organisms to save available environmental surplus of carbon and energy, using dedicated glucose polymers as a storage compartment that can be mobilized at future demand. The origins of such adaptive advantage rely on the acquisition of an enzymatic system for the biosynthesis and degradation of glycogen, along with mechanisms to balance the assembly and disassembly rate of this polysaccharide, in order to store and recover glucose according to cell energy needs. The first step in the classical bacterial glycogen biosynthetic pathway is carried out by the adenosine 5'-diphosphate (ADP)-glucose pyrophosphorylase. This allosteric enzyme synthesizes ADP-glucose and acts as a point of regulation. The second step is carried out by the glycogen synthase, an enzyme that generates linear α-(1→4)-linked glucose chains, whereas the third step catalyzed by the branching enzyme produces α-(1→6)-linked glucan branches in the polymer. Two enzymes facilitate glycogen degradation: glycogen phosphorylase, which functions as an α-(1→4)-depolymerizing enzyme, and the debranching enzyme that catalyzes the removal of α-(1→6)-linked ramifications. In this work, we rationalize the structural basis of glycogen metabolism in bacteria to the light of the current knowledge. We describe and discuss the remarkable progress made in the understanding of the molecular mechanisms of substrate recognition and product release, allosteric regulation and catalysis of all those enzymes.

摘要

代谢途径的进化是自然选择的主要动力。在这个过程的焦点是负责中心能量代谢的酶机制的结构进化。具体来说,糖原代谢的出现使生物体能够利用环境中可用的碳和能量剩余物,将专用的葡萄糖聚合物作为储存室,以备将来需求时使用。这种适应性优势的起源依赖于获得用于合成和降解糖原的酶系统,以及平衡这种多糖组装和拆卸速率的机制,以便根据细胞能量需求储存和回收葡萄糖。经典细菌糖原生物合成途径的第一步由腺苷 5′-二磷酸(ADP)-葡萄糖焦磷酸化酶完成。这种变构酶合成 ADP-葡萄糖并作为调节点起作用。第二步由糖原合酶完成,该酶生成线性α-(1→4)-连接的葡萄糖链,而分支酶催化的第三步在聚合物中产生α-(1→6)-连接的葡聚糖分支。两种酶促进糖原降解:糖原磷酸化酶,作为α-(1→4)解聚酶发挥作用,以及分支酶,它催化去除α-(1→6)连接的分支。在这项工作中,我们根据当前的知识阐明了细菌中糖原代谢的结构基础。我们描述并讨论了在理解底物识别和产物释放、变构调节和所有这些酶的催化的分子机制方面取得的显著进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验