Suppr超能文献

MySurgeryRisk:一种用于手术主要并发症和死亡风险预测的机器学习算法的开发和验证。

MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery.

机构信息

Department of Medicine, College of Medicine, University of Florida, Gainesville, FL.

Precision and Intelligent Systems in Medicine (PRISMA), University of Florida, Gainesville, FL.

出版信息

Ann Surg. 2019 Apr;269(4):652-662. doi: 10.1097/SLA.0000000000002706.

Abstract

OBJECTIVE

To accurately calculate the risk for postoperative complications and death after surgery in the preoperative period using machine-learning modeling of clinical data.

BACKGROUND

Postoperative complications cause a 2-fold increase in the 30-day mortality and cost, and are associated with long-term consequences. The ability to precisely forecast the risk for major complications before surgery is limited.

METHODS

In a single-center cohort of 51,457 surgical patients undergoing major inpatient surgery, we have developed and validated an automated analytics framework for a preoperative risk algorithm (MySurgeryRisk) that uses existing clinical data in electronic health records to forecast patient-level probabilistic risk scores for 8 major postoperative complications (acute kidney injury, sepsis, venous thromboembolism, intensive care unit admission >48 hours, mechanical ventilation >48 hours, wound, neurologic, and cardiovascular complications) and death up to 24 months after surgery. We used the area under the receiver characteristic curve (AUC) and predictiveness curves to evaluate model performance.

RESULTS

MySurgeryRisk calculates probabilistic risk scores for 8 postoperative complications with AUC values ranging between 0.82 and 0.94 [99% confidence intervals (CIs) 0.81-0.94]. The model predicts the risk for death at 1, 3, 6, 12, and 24 months with AUC values ranging between 0.77 and 0.83 (99% CI 0.76-0.85).

CONCLUSIONS

We constructed an automated predictive analytics framework for machine-learning algorithm with high discriminatory ability for assessing the risk of surgical complications and death using readily available preoperative electronic health records data. The feasibility of this novel algorithm implemented in real time clinical workflow requires further testing.

摘要

目的

利用机器学习对临床数据进行建模,准确计算手术前术后并发症和死亡的风险。

背景

术后并发症使 30 天死亡率和成本增加一倍,并伴有长期后果。术前准确预测重大并发症风险的能力有限。

方法

在一个 51457 例接受主要住院手术的单一中心队列中,我们开发并验证了一种自动分析框架,用于术前风险算法(MySurgeryRisk),该算法使用电子健康记录中的现有临床数据来预测患者级别的 8 种主要术后并发症(急性肾损伤、脓毒症、静脉血栓栓塞、入住重症监护病房>48 小时、机械通气>48 小时、伤口、神经和心血管并发症)和术后 24 个月内死亡的概率风险评分。我们使用接收者特征曲线下的面积(AUC)和预测曲线来评估模型性能。

结果

MySurgeryRisk 计算的 8 种术后并发症的概率风险评分的 AUC 值在 0.82 到 0.94 之间[99%置信区间(CI)0.81-0.94]。该模型预测 1、3、6、12 和 24 个月的死亡风险,AUC 值在 0.77 到 0.83 之间(99%CI 0.76-0.85)。

结论

我们构建了一个自动化的预测分析框架,用于机器学习算法,该算法具有使用现成的术前电子健康记录数据评估手术并发症和死亡风险的高判别能力。这种新算法实时实施在临床工作流程中的可行性需要进一步测试。

相似文献

7
Deep-learning model for predicting 30-day postoperative mortality.深度学习模型预测 30 天术后死亡率。
Br J Anaesth. 2019 Nov;123(5):688-695. doi: 10.1016/j.bja.2019.07.025. Epub 2019 Sep 23.

引用本文的文献

8
Federated Learning for Predicting Major Postoperative Complications.用于预测主要术后并发症的联邦学习
Ann Surg Open. 2025 May 2;6(2):e573. doi: 10.1097/AS9.0000000000000573. eCollection 2025 Jun.

本文引用的文献

1
Intelligent Perioperative System: Towards Real-time Big Data Analytics in Surgery Risk Assessment.智能围手术期系统:迈向手术风险评估中的实时大数据分析
DASC PICom DataCom CyberSciTech 2017 (2017). 2017 Nov;2017:1254-1259. doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验