Sakai Kaori, Charlot Florence, Le Saux Thomas, Bonhomme Sandrine, Nogué Fabien, Palauqui Jean-Christophe, Fattaccioli Jacques
PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
2Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France.
Plant Methods. 2019 Jul 24;15:79. doi: 10.1186/s13007-019-0459-z. eCollection 2019.
Plant protoplasts are basic plant cells units in which the pecto-cellulosic cell wall has been removed, but the plasma membrane is intact. One of the main features of plant cells is their strong plasticity, and their propensity to regenerate an organism from a single cell. Methods and differentiation protocols used in plant physiology and biology usually involve macroscopic vessels and containers that make difficult, for example, to follow the fate of the same protoplast all along its full development cycle, but also to perform continuous studies of the influence of various gradients in this context. These limits have hampered the precise study of regeneration processes.
Herein, we present the design of a comprehensive, physiologically relevant, easy-to-use and low-cost microfluidic and microscopic setup for the monitoring of () growth and development on a long-term basis. The experimental solution we developed is made of two parts (i) a microfluidic chip composed of a single layer of about a hundred flow-through microfluidic traps for the immobilization of protoplasts, and (ii) a low-cost, light-controlled, custom-made microscope allowing the continuous recording of the moss development in physiological conditions. We validated the experimental setup with three proofs of concepts: (i) the kinetic monitoring of first division steps and cell wall regeneration, (ii) the influence of the photoperiod on growth of the protonemata, and (iii) finally the induction of leafy buds using a phytohormone, cytokinin.
We developed the design of a comprehensive, physiologically relevant, easy-to-use and low-cost experimental setup for the study of development in a microfluidic environment. This setup allows imaging of development at high resolution and over long time periods.
植物原生质体是去除了果胶 - 纤维素细胞壁但质膜完整的基本植物细胞单位。植物细胞的主要特征之一是其强大的可塑性,以及从单个细胞再生生物体的倾向。植物生理学和生物学中使用的方法和分化方案通常涉及宏观的容器,这使得例如难以追踪同一原生质体在其整个发育周期中的命运,也难以在此背景下对各种梯度的影响进行持续研究。这些限制阻碍了对再生过程的精确研究。
在此,我们展示了一种用于长期监测()生长和发育的全面、生理相关、易于使用且低成本的微流控和显微镜装置的设计。我们开发的实验解决方案由两部分组成:(i)一个微流控芯片,由单层约一百个用于固定原生质体的流通微流控阱组成;(ii)一台低成本、光控的定制显微镜,可在生理条件下连续记录苔藓的发育情况。我们用三个概念验证来验证了该实验装置:(i)对首次分裂步骤和细胞壁再生的动力学监测;(ii)光周期对原丝体生长的影响;(iii)最后使用植物激素细胞分裂素诱导叶状芽。
我们开发了一种用于在微流控环境中研究()发育的全面、生理相关、易于使用且低成本的实验装置设计。该装置允许在高分辨率和长时间内对()发育进行成像。