Suppr超能文献

使用多个深度学习模型提高鼻窦X线片中鼻窦炎识别的诊断准确性。

Improvement diagnostic accuracy of sinusitis recognition in paranasal sinus X-ray using multiple deep learning models.

作者信息

Kim Hyug-Gi, Lee Kyung Mi, Kim Eui Jong, Lee Jin San

机构信息

Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea.

Department of Neurology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea.

出版信息

Quant Imaging Med Surg. 2019 Jun;9(6):942-951. doi: 10.21037/qims.2019.05.15.

Abstract

BACKGROUND

Sinus X-ray imaging is still used in the initial evaluation of paranasal sinusitis, which is diagnosed by the opacification or air/fluid level in the sinuses and best seen in the Waters' view of the paranasal sinus (PNS). The objective of this study was to investigate the feasibility of recognizing the maxillary sinusitis features using PNS X-ray images, as well as to propose the most effective method of determining a reasonable consensus using multiple deep learning models.

METHODS

A total of 4,860 patients, which included 2,430 normal and maxillary sinusitis subjects each, underwent Waters' view PNS X-ray scan. The datasets were randomly split into training (70%), validation (15%), and test (15%) subsets. We implemented a majority decision algorithm to determine a reasonable consensus using three multiple convolutional neural network (CNN) models: VGG-16, VGG-19, and ResNet-101. The performance of sinusitis detection was evaluated with quantitative accuracy (ACC) and activation maps.

RESULTS

We compared the results of our approaches with ACC and activation maps. ACC [and area under the curve (AUC)] of the internal test dataset was evaluated as 87.4% (0.891), 90.8% (0.891), 93.7% (0.937), and 94.1% (0.948) for VGG-16, VGG-19, ResNet-101, and the majority decision, respectively. ACC (and AUC) of the external test dataset was evaluated as 87.58% (0.877), 87.58% (0.877), 92.12% (0.929), and 94.12% (0.942) for VGG-16, VGG-19, ResNet-101, and the majority decision, respectively. Majority decision algorithms can detect missing and correct lesions using a compensation function of the majority decision.

CONCLUSIONS

The majority decision algorithm showed high accuracy and significantly more accurate lesion detection compared with those of individual CNN models. The proposed deep learning method with PNS X-ray images can be used as an adjunct to classify maxillary sinusitis.

摘要

背景

鼻窦X线成像仍用于鼻窦炎的初步评估,鼻窦炎通过鼻窦内的浑浊或气液平面进行诊断,在鼻窦华氏位片中显示最佳。本研究的目的是探讨利用鼻窦华氏位X线图像识别上颌窦炎特征的可行性,并提出使用多个深度学习模型确定合理共识的最有效方法。

方法

共有4860例患者接受了鼻窦华氏位X线扫描,其中正常人和上颌窦炎患者各2430例。数据集被随机分为训练集(70%)、验证集(15%)和测试集(15%)。我们使用三种多重卷积神经网络(CNN)模型:VGG-16、VGG-19和ResNet-101,实施了多数决策算法来确定合理的共识。通过定量准确率(ACC)和激活图评估鼻窦炎检测的性能。

结果

我们将我们方法的结果与ACC和激活图进行了比较。内部测试数据集的ACC[和曲线下面积(AUC)]分别为:VGG-16为87.4%(0.891),VGG-19为90.8%(0.891),ResNet-101为93.7%(0.937),多数决策为94.1%(0.948)。外部测试数据集的ACC(和AUC)分别为:VGG-16为87.58%(0.877),VGG-19为87.58%(0.877),ResNet-101为92.12%(0.929),多数决策为94.12%(0.942)。多数决策算法可以使用多数决策的补偿函数检测遗漏和纠正病变。

结论

与单个CNN模型相比,多数决策算法显示出更高的准确率和更准确的病变检测。所提出的利用鼻窦华氏位X线图像的深度学习方法可作为上颌窦炎分类辅助手段。

相似文献

2
Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs.
Diagnostics (Basel). 2021 Feb 5;11(2):250. doi: 10.3390/diagnostics11020250.
4
Deep Learning in Diagnosis of Maxillary Sinusitis Using Conventional Radiography.
Invest Radiol. 2019 Jan;54(1):7-15. doi: 10.1097/RLI.0000000000000503.
5
Prediction of age and sex from paranasal sinus images using a deep learning network.
Medicine (Baltimore). 2021 Feb 19;100(7):e24756. doi: 10.1097/MD.0000000000024756.
8
[Research on the classification model of chronic sinusitis based on VGG].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2024 Jul;38(7):624-630. doi: 10.13201/j.issn.2096-7993.2024.07.013.
9
Transfer learning in diagnosis of maxillary sinusitis using panoramic radiography and conventional radiography.
Oral Radiol. 2023 Jul;39(3):467-474. doi: 10.1007/s11282-022-00658-3. Epub 2022 Sep 27.

引用本文的文献

1
A Novel Machine Learning Model for the Automated Diagnosis of Nasal Pathology in Canine Patients.
Animals (Basel). 2025 Jun 10;15(12):1718. doi: 10.3390/ani15121718.
2
Artificial intelligence optimizes the standardized diagnosis and treatment of chronic sinusitis.
Front Physiol. 2025 Mar 13;16:1522090. doi: 10.3389/fphys.2025.1522090. eCollection 2025.
4
Hybrid CNN-Transformer Model for Accurate Impacted Tooth Detection in Panoramic Radiographs.
Diagnostics (Basel). 2025 Jan 22;15(3):244. doi: 10.3390/diagnostics15030244.
5
Deep Learning Techniques and Imaging in Otorhinolaryngology-A State-of-the-Art Review.
J Clin Med. 2023 Nov 8;12(22):6973. doi: 10.3390/jcm12226973.
7
8
Multiple instance ensembling for paranasal anomaly classification in the maxillary sinus.
Int J Comput Assist Radiol Surg. 2024 Feb;19(2):223-231. doi: 10.1007/s11548-023-02990-3. Epub 2023 Jul 21.

本文引用的文献

1
Convolutional Neural Networks for Radiologic Images: A Radiologist's Guide.
Radiology. 2019 Mar;290(3):590-606. doi: 10.1148/radiol.2018180547. Epub 2019 Jan 29.
2
Deep Learning in Diagnosis of Maxillary Sinusitis Using Conventional Radiography.
Invest Radiol. 2019 Jan;54(1):7-15. doi: 10.1097/RLI.0000000000000503.
4
ACR Appropriateness Criteria Sinonasal Disease.
J Am Coll Radiol. 2017 Nov;14(11S):S550-S559. doi: 10.1016/j.jacr.2017.08.041.
5
Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs.
Radiology. 2018 Apr;287(1):313-322. doi: 10.1148/radiol.2017170236. Epub 2017 Nov 2.
7
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):677-691. doi: 10.1109/TPAMI.2016.2599174. Epub 2016 Sep 1.
8
Deep Visual-Semantic Alignments for Generating Image Descriptions.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):664-676. doi: 10.1109/TPAMI.2016.2598339. Epub 2016 Aug 5.
9
Conventional sinus radiography compared with CT in the diagnosis of acute sinusitis.
Dentomaxillofac Radiol. 2003 Jan;32(1):60-2. doi: 10.1259/dmfr/65139094.
10
Acute sinusitis: a cost-effective approach to diagnosis and treatment.
Am Fam Physician. 1998 Nov 15;58(8):1795-802, 805-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验