Suppr超能文献

不同类型病变的深度迁移学习对预训练模型分类性能的影响:基于全景X线片上透射性病变的验证

Effect of deep transfer learning with a different kind of lesion on classification performance of pre-trained model: Verification with radiolucent lesions on panoramic radiographs.

作者信息

Kise Yoshitaka, Ariji Yoshiko, Kuwada Chiaki, Fukuda Motoki, Ariji Eiichiro

机构信息

Department of Oral and Maxillofacial Radiology, Aichi Gakuin University School of Dentistry, Nagoya, Japan.

Department of Oral Radiology, Osaka Dental University, Osaka, Japan.

出版信息

Imaging Sci Dent. 2023 Mar;53(1):27-34. doi: 10.5624/isd.20220133. Epub 2022 Nov 30.

Abstract

PURPOSE

The aim of this study was to clarify the influence of training with a different kind of lesion on the performance of a target model.

MATERIALS AND METHODS

A total of 310 patients (211 men, 99 women; average age, 47.9±16.1 years) were selected and their panoramic images were used in this study. We created a source model using panoramic radiographs including mandibular radiolucent cyst-like lesions (radicular cyst, dentigerous cyst, odontogenic keratocyst, and ameloblastoma). The model was simulatively transferred and trained on images of Stafne's bone cavity. A learning model was created using a customized DetectNet built in the Digits version 5.0 (NVIDIA, Santa Clara, CA). Two machines (Machines A and B) with identical specifications were used to simulate transfer learning. A source model was created from the data consisting of ameloblastoma, odontogenic keratocyst, dentigerous cyst, and radicular cyst in Machine A. Thereafter, it was transferred to Machine B and trained on additional data of Stafne's bone cavity to create target models. To investigate the effect of the number of cases, we created several target models with different numbers of Stafne's bone cavity cases.

RESULTS

When the Stafne's bone cavity data were added to the training, both the detection and classification performances for this pathology improved. Even for lesions other than Stafne's bone cavity, the detection sensitivities tended to increase with the increase in the number of Stafne's bone cavities.

CONCLUSION

This study showed that using different lesions for transfer learning improves the performance of the model.

摘要

目的

本研究的目的是阐明使用不同类型病变进行训练对目标模型性能的影响。

材料与方法

本研究共选取310例患者(男性211例,女性99例;平均年龄47.9±16.1岁),并使用其全景图像。我们使用包括下颌放射性透光性囊肿样病变(根囊肿、含牙囊肿、牙源性角化囊肿和成釉细胞瘤)的全景X线片创建了一个源模型。该模型在斯氏骨腔图像上进行模拟转移和训练。使用Digits 5.0版本(英伟达,加利福尼亚州圣克拉拉)中内置的定制DetectNet创建了一个学习模型。使用两台规格相同的机器(机器A和机器B)来模拟迁移学习。在机器A中,从由成釉细胞瘤、牙源性角化囊肿、含牙囊肿和根囊肿组成的数据创建源模型。此后,将其转移到机器B,并在斯氏骨腔的额外数据上进行训练,以创建目标模型。为了研究病例数量的影响,我们创建了几个包含不同数量斯氏骨腔病例的目标模型。

结果

当将斯氏骨腔数据添加到训练中时,该病变的检测和分类性能均有所提高。即使对于斯氏骨腔以外的病变,检测敏感性也倾向于随着斯氏骨腔数量的增加而增加。

结论

本研究表明,在迁移学习中使用不同病变可提高模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d05/10060760/3568f0a47704/isd-53-27-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验