Suppr超能文献

基于独立任务学习的医学影像端到端深度学习:上颌窦炎诊断的应用

Effective End-to-End Deep Learning Process in Medical Imaging Using Independent Task Learning: Application for Diagnosis of Maxillary Sinusitis.

机构信息

Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea.

Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea.

出版信息

Yonsei Med J. 2021 Dec;62(12):1125-1135. doi: 10.3349/ymj.2021.62.12.1125.

Abstract

PURPOSE

This study aimed to propose an effective end-to-end process in medical imaging using an independent task learning (ITL) algorithm and to evaluate its performance in maxillary sinusitis applications.

MATERIALS AND METHODS

For the internal dataset, 2122 Waters' view X-ray images, which included 1376 normal and 746 sinusitis images, were divided into training (n=1824) and test (n=298) datasets. For external validation, 700 images, including 379 normal and 321 sinusitis images, from three different institutions were evaluated. To develop the automatic diagnosis system algorithm, four processing steps were performed: 1) preprocessing for ITL, 2) facial patch detection, 3) maxillary sinusitis detection, and 4) a localization report with the sinusitis detector.

RESULTS

The accuracy of facial patch detection, which was the first step in the end-to-end algorithm, was 100%, 100%, 99.5%, and 97.5% for the internal set and external validation sets #1, #2, and #3, respectively. The accuracy and area under the receiver operating characteristic curve (AUC) of maxillary sinusitis detection were 88.93% (0.89), 91.67% (0.90), 90.45% (0.86), and 85.13% (0.85) for the internal set and external validation sets #1, #2, and #3, respectively. The accuracy and AUC of the fully automatic sinusitis diagnosis system, including site localization, were 79.87% (0.80), 84.67% (0.82), 83.92% (0.82), and 73.85% (0.74) for the internal set and external validation sets #1, #2, and #3, respectively.

CONCLUSION

ITL application for maxillary sinusitis showed reasonable performance in internal and external validation tests, compared with applications used in previous studies.

摘要

目的

本研究旨在提出一种使用独立任务学习(ITL)算法的医学影像学端到端有效处理方法,并评估其在上颌窦炎应用中的性能。

材料和方法

对于内部数据集,包括 1376 个正常和 746 个鼻窦炎图像的 2122 个 Waters' 视图 X 射线图像被分为训练(n=1824)和测试(n=298)数据集。为了进行外部验证,从三个不同的机构评估了 700 个图像,包括 379 个正常和 321 个鼻窦炎图像。为了开发自动诊断系统算法,进行了四个处理步骤:1)ITL 的预处理,2)面部斑块检测,3)上颌窦炎检测,以及 4)带有鼻窦炎探测器的定位报告。

结果

端到端算法的第一步,即面部斑块检测的准确率,对于内部数据集和外部验证集 #1、#2 和 #3,分别为 100%、100%、99.5%和 97.5%。上颌窦炎检测的准确性和接收器操作特征曲线(ROC)下面积(AUC)分别为 88.93%(0.89)、91.67%(0.90)、90.45%(0.86)和 85.13%(0.85)对于内部数据集和外部验证集 #1、#2 和 #3,分别。包括部位定位在内的全自动鼻窦炎诊断系统的准确性和 AUC 分别为 79.87%(0.80)、84.67%(0.82)、83.92%(0.82)和 73.85%(0.74)对于内部数据集和外部验证集 #1、#2 和 #3,分别。

结论

与以前的研究应用相比,ITL 在内部和外部验证测试中对上颌窦炎的应用表现出合理的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/8612852/644980b48904/ymj-62-1125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验