Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
Antioxid Redox Signal. 2020 Apr 1;32(10):659-676. doi: 10.1089/ars.2019.7725. Epub 2019 Sep 9.
Cellular redox processes are highly interconnected, yet not in equilibrium, and governed by a wide range of biochemical parameters. Technological advances continue refining how specific redox processes are regulated, but broad understanding of the dynamic interconnectivity between cellular redox modules remains limited. Systems biology investigates multiple components in complex environments and can provide integrative insights into the multifaceted cellular redox state. This review describes the state of the art in redox systems biology as well as provides an updated perspective and practical guide for harnessing thousands of cysteine sensors in the redoxome for multiparameter characterization of cellular redox networks. Redox systems biology has been applied to genome-scale models and large public datasets, challenged common conceptions, and provided new insights that complement reductionist approaches. Advances in public knowledge and user-friendly tools for proteome-wide annotation of cysteine sentinels can now leverage cysteine redox proteomics datasets to provide spatial, functional, and protein structural information. Careful consideration of available analytical approaches is needed to broadly characterize the systems-level properties of redox signaling networks and be experimentally feasible. The cysteine redoxome is an informative focal point since it integrates many aspects of redox biology. The mechanisms and redox modules governing cysteine redox regulation, cysteine oxidation assays, proteome-wide annotation of the biophysical and biochemical properties of individual cysteines, and their clinical application are discussed. Investigating the cysteine redoxome at a systems level will uncover new insights into the mechanisms of selectivity and context dependence of redox signaling networks.
细胞氧化还原过程高度相互关联,但并非处于平衡状态,而是受到多种生化参数的控制。技术的进步不断改进特定氧化还原过程的调控方式,但对细胞氧化还原模块之间动态互联性的广泛理解仍然有限。系统生物学研究复杂环境中的多个成分,并可以为细胞氧化还原状态的多方面提供综合见解。本综述描述了氧化还原系统生物学的最新进展,并为利用氧化还原组中的数千个半胱氨酸传感器对细胞氧化还原网络进行多参数表征提供了更新的视角和实用指南。氧化还原系统生物学已应用于基因组规模模型和大型公共数据集,挑战了常见的概念,并提供了补充还原方法的新见解。公共知识的进步和用于蛋白质组范围内半胱氨酸感受器注释的用户友好工具现在可以利用半胱氨酸氧化还原蛋白质组学数据集提供空间、功能和蛋白质结构信息。需要仔细考虑可用的分析方法,以广泛表征氧化还原信号网络的系统级特性,并使其具有实验可行性。半胱氨酸氧化还原组是一个信息丰富的焦点,因为它整合了氧化还原生物学的许多方面。本文讨论了调节半胱氨酸氧化还原的机制和氧化还原模块、半胱氨酸氧化测定、单个半胱氨酸的生物物理和生化特性的蛋白质组范围内注释及其临床应用。从系统水平研究半胱氨酸氧化还原组将揭示氧化还原信号网络的选择性和上下文依赖性机制的新见解。