Suppr超能文献

麻疹病毒形成具有液体细胞器特性的包涵体。

Measles Virus Forms Inclusion Bodies with Properties of Liquid Organelles.

机构信息

Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.

Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA

出版信息

J Virol. 2019 Oct 15;93(21). doi: 10.1128/JVI.00948-19. Print 2019 Nov 1.

Abstract

Nonsegmented negative-strand RNA viruses, including measles virus (MeV), a member of the family, are assumed to replicate in cytoplasmic inclusion bodies. These cytoplasmic viral factories are not membrane bound, and they serve to concentrate the viral RNA replication machinery. Although inclusion bodies are a prominent feature in MeV-infected cells, their biogenesis and regulation are not well understood. Here, we show that infection with MeV triggers inclusion body formation via liquid-liquid phase separation (LLPS), a process underlying the formation of membraneless organelles. We find that the viral nucleoprotein (N) and phosphoprotein (P) are sufficient to trigger MeV phase separation, with the C-terminal domains of the viral N and P proteins playing a critical role in the phase transition. We provide evidence suggesting that the phosphorylation of P and dynein-mediated transport facilitate the growth of these organelles, implying that they may have key regulatory roles in the biophysical assembly process. In addition, our findings support the notion that these inclusions change from liquid to gel-like structures as a function of time after infection, leaving open the intriguing possibility that the dynamics of these organelles can be tuned during infection to optimally suit the changing needs during the viral replication cycle. Our study provides novel insight into the process of formation of viral inclusion factories, and taken together with earlier studies, suggests that have broadly evolved to utilize LLPS as a common strategy to assemble cytoplasmic replication factories in infected cells. Measles virus remains a pathogen of significant global concern. Despite an effective vaccine, outbreaks continue to occur, and globally ∼100,000 measles-related deaths are seen annually. Understanding the molecular basis of virus-host interactions that impact the efficiency of virus replication is essential for the further development of prophylactic and therapeutic strategies. Measles virus replication occurs in the cytoplasm in association with discrete bodies, though little is known of the nature of the inclusion body structures. We recently established that the cellular protein WD repeat-containing protein 5 (WDR5) enhances MeV growth and is enriched in cytoplasmic viral inclusion bodies that include viral proteins responsible for RNA replication. Here, we show that MeV N and P proteins are sufficient to trigger the formation of WDR5-containing inclusion bodies, that these structures display properties characteristic of phase-separated liquid organelles, and that P phosphorylation together with the host dynein motor affect the efficiency of the liquid-liquid phase separation process.

摘要

非节段负链 RNA 病毒,包括麻疹病毒(Measles virus,MeV),属于副黏液病毒科,被认为在细胞质包涵体内复制。这些细胞质病毒工厂没有膜结合,它们集中了病毒 RNA 复制机制。尽管包涵体是感染 MeV 的细胞的一个显著特征,但它们的发生和调控机制尚不清楚。在这里,我们表明 MeV 感染通过液-液相分离(liquid-liquid phase separation,LLPS)触发包涵体形成,这是一种无膜细胞器形成的过程。我们发现,病毒核蛋白(nucleoprotein,N)和磷蛋白(phosphoprotein,P)足以触发 MeV 相分离,病毒 N 和 P 蛋白的 C 端结构域在相变中起着关键作用。我们提供的证据表明,P 的磷酸化和动力蛋白介导的运输有助于这些细胞器的生长,这意味着它们可能在生物物理组装过程中具有关键的调节作用。此外,我们的研究结果支持这样一种观点,即这些包涵体在感染后随时间的推移从液态转变为凝胶状结构,这就提出了一个有趣的可能性,即在感染过程中可以调节这些细胞器的动态,以适应病毒复制周期中不断变化的需求。我们的研究为病毒包涵体工厂形成过程提供了新的见解,结合早期研究表明,副黏液病毒科广泛进化为利用液-液相分离作为在感染细胞中组装细胞质复制工厂的共同策略。麻疹病毒仍然是一个具有重要全球意义的病原体。尽管有有效的疫苗,但麻疹仍在继续爆发,全球每年仍有约 10 万人死于麻疹。了解影响病毒复制效率的病毒-宿主相互作用的分子基础对于进一步发展预防性和治疗性策略至关重要。麻疹病毒在细胞质中与离散体一起复制,但对包涵体结构的性质知之甚少。我们最近发现,细胞蛋白 WD 重复蛋白 5(WD repeat-containing protein 5,WDR5)增强了 MeV 的生长,并在包含负责 RNA 复制的病毒蛋白的细胞质病毒包涵体中富集。在这里,我们表明,MeV N 和 P 蛋白足以触发包含 WDR5 的包涵体的形成,这些结构显示出液-液相分离的液相细胞器的特性,并且 P 磷酸化与宿主动力蛋白一起影响液-液相分离过程的效率。

相似文献

1
Measles Virus Forms Inclusion Bodies with Properties of Liquid Organelles.
J Virol. 2019 Oct 15;93(21). doi: 10.1128/JVI.00948-19. Print 2019 Nov 1.
5
Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly.
Sci Adv. 2020 Apr 1;6(14):eaaz7095. doi: 10.1126/sciadv.aaz7095. eCollection 2020 Apr.
10
Structure, dynamics and phase separation of measles virus RNA replication machinery.
Curr Opin Virol. 2020 Apr;41:59-67. doi: 10.1016/j.coviro.2020.05.006. Epub 2020 Jun 20.

引用本文的文献

2
The rheology and interfacial properties of biomolecular condensates.
Biophys Rev. 2025 Jun 30;17(3):867-891. doi: 10.1007/s12551-025-01326-6. eCollection 2025 Jun.
5
Evaluating the potential of anti-dsRNA antibodies as an alternative viral sensing tool in encephalitides of different species.
Front Vet Sci. 2025 Mar 21;12:1540437. doi: 10.3389/fvets.2025.1540437. eCollection 2025.
6
Two Birds With One Stone: RNA Virus Strategies to Manipulate G3BP1 and Other Stress Granule Components.
Wiley Interdiscip Rev RNA. 2025 Mar-Apr;16(2):e70005. doi: 10.1002/wrna.70005.
8
Structural and molecular properties of mumps virus inclusion bodies.
Sci Adv. 2024 Dec 6;10(49):eadr0359. doi: 10.1126/sciadv.adr0359.
9
A cytoplasmic form of EHMT1N methylates viral proteins to enable inclusion body maturation and efficient viral replication.
PLoS Biol. 2024 Nov 7;22(11):e3002871. doi: 10.1371/journal.pbio.3002871. eCollection 2024 Nov.
10
Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling.
J Virol. 2024 Nov 19;98(11):e0110424. doi: 10.1128/jvi.01104-24. Epub 2024 Oct 16.

本文引用的文献

1
Nipah virus induces two inclusion body populations: Identification of novel inclusions at the plasma membrane.
PLoS Pathog. 2019 Apr 29;15(4):e1007733. doi: 10.1371/journal.ppat.1007733. eCollection 2019 Apr.
2
Using chemical inhibitors to probe AAA protein conformational dynamics and cellular functions.
Curr Opin Chem Biol. 2019 Jun;50:45-54. doi: 10.1016/j.cbpa.2019.02.019. Epub 2019 Mar 23.
3
Stronger together: Multi-genome transmission of measles virus.
Virus Res. 2019 May;265:74-79. doi: 10.1016/j.virusres.2019.03.007. Epub 2019 Mar 7.
4
Cyclical adaptation of measles virus quasispecies to epithelial and lymphocytic cells: To V, or not to V.
PLoS Pathog. 2019 Feb 15;15(2):e1007605. doi: 10.1371/journal.ppat.1007605. eCollection 2019 Feb.
7
The molecular language of membraneless organelles.
J Biol Chem. 2019 May 3;294(18):7115-7127. doi: 10.1074/jbc.TM118.001192. Epub 2018 Jul 25.
8
Protein Phase Separation: A New Phase in Cell Biology.
Trends Cell Biol. 2018 Jun;28(6):420-435. doi: 10.1016/j.tcb.2018.02.004. Epub 2018 Mar 27.
10
Dynarrestin, a Novel Inhibitor of Cytoplasmic Dynein.
Cell Chem Biol. 2018 Apr 19;25(4):357-369.e6. doi: 10.1016/j.chembiol.2017.12.014. Epub 2018 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验