Williams-Jones Daniel P, Webby Melissa N, Bray James E, Maiden Martin C J, Kleanthous Colin, Szczepaniak Joanna
Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
Department of Biology, University of Oxford, Oxford OX1 3RB, UK.
Mol Biol Evol. 2025 Jun 4;42(6). doi: 10.1093/molbev/msaf138.
In double-membraned bacteria, non-equilibrium processes that occur at the outer membrane are typically coupled to the chemiosmotically energized inner membrane. TolA and TonB are homologous proteins which energetically couple inner membrane motor proteins to the essential processes of outer membrane stabilization and substrate import, respectively. The evolutionary trajectories of these proteins have been difficult to elucidate due to low-sequence conservation, yet they are thought to transduce force similarly. Here, this problem was addressed using structural prediction approaches to identify and annotate force transduction operons to trace their distribution and evolutionary origins. In the process, we identify a novel outer membrane-tethering system and a previously unknown family of monomeric force transducers. This approach revealed putative tolA genes, and thus the core organizational principles of the tol-pal operon throughout diverse bacterial taxa. We discovered that the α-helical structure of the periplasm-spanning domain II of TolA previously thought its hallmark, is anomalous amongst most Tol-Pal systems. This structure is mainly prevalent in γ-proteobacteria, likely in adaptation to their lifestyle. Comparison of Tol-Pal and Ton system distribution suggests that TolA emerged from a TonB paralogue and co-emerged with Pal, the outer membrane-tethering lipoprotein that functionalizes the Tol-Pal system. We also determined that TolB, the Pal-mobilizing protein, likely emerged from a family of outer membrane proteins; and CpoB, a periplasmic factor that coordinates peptidoglycan remodeling with cell division, was originally a lipoprotein present in the ancestral Tol-Pal system. The extensive conservation of the Tol-Pal system throughout Gracilicutes highlights its significance in bacterial cell biology.
在具有双层膜的细菌中,发生在外膜的非平衡过程通常与通过化学渗透提供能量的内膜相偶联。TolA和TonB是同源蛋白,它们分别将内膜运动蛋白与外膜稳定和底物导入的基本过程在能量上偶联起来。由于序列保守性低,这些蛋白质的进化轨迹难以阐明,但人们认为它们以类似的方式传递力。在这里,我们使用结构预测方法来识别和注释力转导操纵子,以追踪它们的分布和进化起源,从而解决了这个问题。在此过程中,我们鉴定出一种新型的外膜 tethering 系统和一个以前未知的单体力传感器家族。这种方法揭示了假定的tolA基因,从而揭示了整个不同细菌类群中tol-pal操纵子的核心组织原则。我们发现,以前被认为是TolA标志性特征的跨周质结构域II的α螺旋结构,在大多数Tol-Pal系统中是异常的。这种结构主要存在于γ-变形菌中,可能是为了适应它们的生活方式。Tol-Pal和Ton系统分布的比较表明,TolA起源于TonB的一个旁系同源物,并与Pal共同出现,Pal是使Tol-Pal系统功能化的外膜 tethering 脂蛋白。我们还确定,Pal动员蛋白TolB可能起源于一个外膜蛋白家族;而CpoB是一种将肽聚糖重塑与细胞分裂相协调的周质因子,它最初是祖先Tol-Pal系统中存在的一种脂蛋白。Tol-Pal系统在整个薄壁菌门中的广泛保守性突出了其在细菌细胞生物学中的重要性。