Department of Pathological Physiology, Faculty of Medicine, Laboratory of Cancer Biology and Genetics, Masaryk University Brno, Kamenice 5, Brno, 625 00, Czech Republic.
Department of Pathological Physiology, Faculty of Medicine, Gamma Delta T Cell Laboratory, Masaryk University Brno, Kamenice 5, Brno, 625 00, Czech Republic.
Cell Mol Life Sci. 2020 May;77(9):1793-1810. doi: 10.1007/s00018-019-03251-w. Epub 2019 Aug 2.
The universal nine-amino-acid transactivation domains (9aaTADs) have been identified in numerous transcription activators. Here, we identified the conserved 9aaTAD motif in all nine members of the specificity protein (SP) family. Previously, the Sp1 transcription factor has been defined as a glutamine-rich activator. We showed by amino acid substitutions that the glutamine residues are completely dispensable for 9aaTAD function and are not conserved in the SP family. We described the origin and evolutionary history of 9aaTADs. The 9aaTADs of the ancestral Sp2 gene became inactivated in early chordates. We next discovered that an accumulation of valines in 9aaTADs inactivated their transactivation function and enabled their strict conservation during evolution. Subsequently, in chordates, Sp2 has duplicated and created new paralogs, Sp1, Sp3, and Sp4 (the SP1-4 clade). During chordate evolution, the dormancy of the Sp2 activation domain lasted over 100 million years. The dormant but still intact ancestral Sp2 activation domains allowed diversification of the SP1-4 clade into activators and repressors. By valine substitution in the 9aaTADs, Sp1 and Sp3 regained their original activator function found in ancestral lower metazoan sea sponges. Therefore, the vertebrate SP1-4 clade could include both repressors and activators. Furthermore, we identified secondary 9aaTADs in Sp2 introns present from fish to primates, including humans. In the gibbon genome, introns containing 9aaTADs were used as exons, which turned the Sp2 gene into an activator. Similarly, we identified introns containing 9aaTADs used conditionally as exons in the (SP family-unrelated) transcription factor SREBP1, suggesting that the intron-9aaTAD reservoir is a general phenomenon.
普遍的九氨基酸激活结构域 (9aaTADs) 已在众多转录激活因子中被发现。在这里,我们在特异性蛋白 (SP) 家族的所有九个成员中都鉴定到了保守的 9aaTAD 基序。此前,Sp1 转录因子被定义为富含谷氨酰胺的激活剂。我们通过氨基酸取代表明,谷氨酰胺残基对于 9aaTAD 功能完全可有可无,并且在 SP 家族中并不保守。我们描述了 9aaTAD 的起源和进化历史。祖先 Sp2 基因的 9aaTAD 在早期脊索动物中失活。接下来,我们发现 9aaTAD 中缬氨酸的积累使其激活功能失活,并使其在进化过程中得到严格的保守。随后,在脊索动物中,Sp2 发生了复制,并产生了新的同源基因 Sp1、Sp3 和 Sp4(SP1-4 分支)。在脊索动物进化过程中,Sp2 激活结构域的休眠持续了超过 1 亿年。休眠但仍完整的祖先 Sp2 激活结构域使 SP1-4 分支多样化为激活剂和抑制剂。通过在 9aaTAD 中替换缬氨酸,Sp1 和 Sp3 恢复了其在祖先低等后生动物海海绵中发现的原始激活剂功能。因此,脊椎动物 SP1-4 分支可以包括抑制剂和激活剂。此外,我们在从鱼类到灵长类动物(包括人类)的 Sp2 内含子中鉴定到了二级 9aaTAD。在倭黑猩猩基因组中,含有 9aaTAD 的内含子被用作外显子,使 Sp2 基因变成了激活剂。同样,我们鉴定到含有 9aaTAD 的内含子作为(与 SP 家族无关的)转录因子 SREBP1 中的条件性外显子,这表明内含子-9aaTAD 库是一种普遍现象。