Suppr超能文献

评估结构化和非结构化电子健康记录中社会和行为决定因素的数据可用性:对一个多层次医疗系统的回顾性分析。

Assessing the Availability of Data on Social and Behavioral Determinants in Structured and Unstructured Electronic Health Records: A Retrospective Analysis of a Multilevel Health Care System.

作者信息

Hatef Elham, Rouhizadeh Masoud, Tia Iddrisu, Lasser Elyse, Hill-Briggs Felicia, Marsteller Jill, Kharrazi Hadi

机构信息

Center for Population Health IT, Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.

Johns Hopkins Center for Health Disparities Solutions, Baltimore, MD, United States.

出版信息

JMIR Med Inform. 2019 Aug 2;7(3):e13802. doi: 10.2196/13802.

Abstract

BACKGROUND

Most US health care providers have adopted electronic health records (EHRs) that facilitate the uniform collection of clinical information. However, standardized data formats to capture social and behavioral determinants of health (SBDH) in structured EHR fields are still evolving and not adopted widely. Consequently, at the point of care, SBDH data are often documented within unstructured EHR fields that require time-consuming and subjective methods to retrieve. Meanwhile, collecting SBDH data using traditional surveys on a large sample of patients is infeasible for health care providers attempting to rapidly incorporate SBDH data in their population health management efforts. A potential approach to facilitate targeted SBDH data collection is applying information extraction methods to EHR data to prescreen the population for identification of immediate social needs.

OBJECTIVE

Our aim was to examine the availability and characteristics of SBDH data captured in the EHR of a multilevel academic health care system that provides both inpatient and outpatient care to patients with varying SBDH across Maryland.

METHODS

We measured the availability of selected patient-level SBDH in both structured and unstructured EHR data. We assessed various SBDH including demographics, preferred language, alcohol use, smoking status, social connection and/or isolation, housing issues, financial resource strains, and availability of a home address. EHR's structured data were represented by information collected between January 2003 and June 2018 from 5,401,324 patients. EHR's unstructured data represented information captured for 1,188,202 patients between July 2016 and May 2018 (a shorter time frame because of limited availability of consistent unstructured data). We used text-mining techniques to extract a subset of SBDH factors from EHR's unstructured data.

RESULTS

We identified a valid address or zip code for 5.2 million (95.00%) of approximately 5.4 million patients. Ethnicity was captured for 2.7 million (50.00%), whereas race was documented for 4.9 million (90.00%) and a preferred language for 2.7 million (49.00%) patients. Information regarding alcohol use and smoking status was coded for 490,348 (9.08%) and 1,728,749 (32.01%) patients, respectively. Using the International Classification of Diseases-10th Revision diagnoses codes, we identified 35,171 (0.65%) patients with information related to social connection/isolation, 10,433 (0.19%) patients with housing issues, and 3543 (0.07%) patients with income/financial resource strain. Of approximately 1.2 million unique patients with unstructured data, 30,893 (2.60%) had at least one clinical note containing phrases referring to social connection/isolation, 35,646 (3.00%) included housing issues, and 11,882 (1.00%) had mentions of financial resource strain.

CONCLUSIONS

Apart from demographics, SBDH data are not regularly collected for patients. Health care providers should assess the availability and characteristics of SBDH data in EHRs. Evaluating the quality of SBDH data can potentially enable health care providers to modify underlying workflows to improve the documentation, collection, and extraction of SBDH data from EHRs.

摘要

背景

大多数美国医疗服务提供者已采用电子健康记录(EHR),这有助于统一收集临床信息。然而,用于在结构化EHR字段中捕获健康的社会和行为决定因素(SBDH)的标准化数据格式仍在不断发展,尚未得到广泛采用。因此,在医疗服务点,SBDH数据通常记录在非结构化EHR字段中,需要耗时且主观的方法来检索。与此同时,对于试图在其人群健康管理工作中快速纳入SBDH数据的医疗服务提供者来说,使用传统调查对大量患者收集SBDH数据是不可行的。一种促进有针对性的SBDH数据收集的潜在方法是将信息提取方法应用于EHR数据,以便对人群进行预筛查,以识别即时的社会需求。

目的

我们的目的是检查在一个多层次学术医疗系统的EHR中捕获的SBDH数据的可用性和特征,该系统为马里兰州不同SBDH的患者提供住院和门诊护理。

方法

我们测量了结构化和非结构化EHR数据中选定的患者层面SBDH的可用性。我们评估了各种SBDH,包括人口统计学、首选语言、饮酒情况、吸烟状况、社会联系和/或孤立、住房问题、财务资源紧张以及家庭住址的可用性。EHR的结构化数据由2003年1月至2018年6月期间从5401324名患者收集的信息表示。EHR的非结构化数据表示2016年7月至2018年5月期间为1188202名患者捕获的信息(由于一致的非结构化数据可用性有限,时间框架较短)。我们使用文本挖掘技术从EHR的非结构化数据中提取SBDH因素的一个子集。

结果

在约540万患者中,我们为520万(95.00%)患者确定了有效的地址或邮政编码。记录了270万(50.00%)患者的种族,490万(90.00%)患者的种族,以及270万(49.00%)患者的首选语言。分别为490348(9.08%)和1728749(32.01%)名患者编码了饮酒和吸烟状况信息。使用国际疾病分类第十次修订版诊断代码,我们确定了35171(0.65%)名与社会联系/孤立相关信息的患者,10433(0.19%)名有住房问题的患者,以及3543(0.07%)名有收入/财务资源紧张的患者。在约120万拥有非结构化数据的独特患者中,30893(2.60%)至少有一条临床记录包含提及社会联系/孤立的短语,35646(3.00%)包含住房问题,11882(1.00%)提到了财务资源紧张。

结论

除了人口统计学信息外,未定期为患者收集SBDH数据。医疗服务提供者应评估EHR中SBDH数据的可用性和特征。评估SBDH数据的质量可能使医疗服务提供者能够修改基础工作流程,以改善SBDH数据从EHR中的记录、收集和提取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b117/6696855/96a5c8501c89/medinform_v7i3e13802_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验