Suppr超能文献

新的简化风险计算器(SURPAS)与美国外科医师学会手术风险计算器预测术后死亡率和发病率的准确性比较。

Comparison of accuracy of prediction of postoperative mortality and morbidity between a new, parsimonious risk calculator (SURPAS) and the ACS Surgical Risk Calculator.

机构信息

Surgical Outcomes and Applied Research Program, University of Colorado School of Medicine, Aurora, CO, USA.

Surgical Outcomes and Applied Research Program, University of Colorado School of Medicine, Aurora, CO, USA; Adult and Child Center for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine, Aurora, CO, USA.

出版信息

Am J Surg. 2020 Jun;219(6):1065-1072. doi: 10.1016/j.amjsurg.2019.07.036. Epub 2019 Jul 29.

Abstract

BACKGROUND

The novel Surgical Risk Preoperative Assessment System (SURPAS) requires entry of five predictor variables (the other three variables of the eight-variable model are automatically obtained from the electronic health record or a table look-up), provides patient risk estimates compared to national averages, is integrated into the electronic health record, and provides a graphical handout of risks for patients. The accuracy of the SURPAS tool was compared to that of the American College of Surgeons Surgical Risk Calculator (ACS-SRC).

METHODS

Predicted risk of postoperative mortality and morbidity was calculated using both SURPAS and ACS-SRC for 1,006 randomly selected 2007-2016 ACS National Surgical Quality Improvement Program (NSQIP) patients with known outcomes. C-indexes, Hosmer-Lemeshow graphs, and Brier scores were compared between SURPAS and ACS-SRC.

RESULTS

ACS-SRC risk estimates for overall morbidity underestimated risk compared to observed postoperative overall morbidity, particularly for the highest risk patients. SURPAS accurately estimates morbidity risk compared to observed morbidity.

CONCLUSIONS

SURPAS risk predictions were more accurate than ACS-SRC's for overall morbidity, particularly for high risk patients.

SUMMARY

The accuracy of the SURPAS tool was compared to that of the American College of Surgeons Surgical Risk Calculator (ACS-SRC). SURPAS risk predictions were more accurate than those of the ACS-SRC for overall morbidity, particularly for high risk patients.

摘要

背景

新型外科手术风险术前评估系统(SURPAS)需要输入五个预测变量(八个变量模型中的另外三个变量自动从电子健康记录或表格中获取),与全国平均值相比,为患者提供风险估计,集成到电子健康记录中,并为患者提供风险的图形摘要。将 SURPAS 工具的准确性与美国外科医师学会外科手术风险计算器(ACS-SRC)进行了比较。

方法

使用 SURPAS 和 ACS-SRC 为 1006 名随机选择的 2007-2016 年 ACS 国家外科质量改进计划(NSQIP)患者计算术后死亡率和发病率的预测风险,这些患者的结局已知。比较了 SURPAS 和 ACS-SRC 之间的 C 指数、Hosmer-Lemeshow 图和 Brier 评分。

结果

与观察到的术后总体发病率相比,ACS-SRC 的总体发病率风险估计值低估了风险,尤其是对于风险最高的患者。SURPAS 与观察到的发病率相比,准确估计了发病率风险。

结论

与 ACS-SRC 相比,SURPAS 的风险预测对于总体发病率更准确,尤其是对于高危患者。

总结

将新型外科手术风险术前评估系统(SURPAS)的准确性与美国外科医师学会外科手术风险计算器(ACS-SRC)进行了比较。与 ACS-SRC 相比,SURPAS 对总体发病率的预测更为准确,尤其是对高危患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验