Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Neuroscience. 2019 Sep 15;416:9-19. doi: 10.1016/j.neuroscience.2019.07.045. Epub 2019 Aug 1.
p53 and parkin are involved in mitochondrial quality control. The present study aimed to characterize the functional significance of parkin/p53 in the development of mitochondrial dysfunction and the pathophysiology of neuropathic pain in type I diabetes. Type I diabetes was induced in mice (N = 170) using streptozotocin (STZ). Pifithrin-α, a selective p53 inhibitor, was administered to assess its effects on diabetic pain hypersensitivity, parkin expression and mitochondrial function. Expressions of parkin and p53, mitochondrial number and level of reactive oxygen species (ROS) in the dorsal root ganglion (DRG) were analyzed by immunohistochemistry, western blotting and real time PCR. Separately, mice were treated using intravenous methylglyoxal, then pain hypersensitivity and p53/parkin expression in the DRG were assessed. Mitochondrial membrane potential was also analyzed in cultured DRG neurons treated with methylglyoxal. Mice developed pain hypersensitivity for 3 weeks after STZ treatment. p53 expression was significantly increased (control, 0.68 ± 0.122; STZ, 1.88 ± 0.21) whereas parkin expression was significantly reduced (control, 1.02 ± 0.17; STZ, 0.59 ± 0.14), in the DRG after STZ treatment. Inhibition of p53 by pifithrin-α prevented STZ-induced pain hypersensitivity and parkin downregulation. Pifithrin-α also inhibited STZ-induced reductions in mitochondrial number and accumulation of mitochondrial ROS. Methylglyoxal elicited pain hypersensitivity and alteration of p53/parkin expression, similar to STZ. Methylglyoxal also decreased mitochondrial membrane potential in cultured DRG neurons. Alteration of p53/parkin expression produces mitochondrial dysfunction and ROS accumulation, leading to pain hypersensitivity in diabetic or methylglyoxal treated mice. Methylglyoxal produces neurological derangements similar to diabetes, via direct mechanisms on DRG neurons.
p53 和 parkin 参与线粒体质量控制。本研究旨在探讨 parkin/p53 在 1 型糖尿病中线粒体功能障碍和神经病理性疼痛发病机制中的功能意义。使用链脲佐菌素 (STZ) 在小鼠中诱导 1 型糖尿病 (N=170)。给予 pifithrin-α,一种选择性 p53 抑制剂,以评估其对糖尿病痛觉过敏、parkin 表达和线粒体功能的影响。通过免疫组织化学、western blot 和实时 PCR 分析背根神经节 (DRG) 中 parkin 和 p53 的表达、线粒体数量和活性氧 (ROS) 水平。另外,通过静脉注射甲基乙二醛处理小鼠,然后评估 DRG 中的痛觉过敏和 p53/parkin 表达。还分析了甲基乙二醛处理的培养 DRG 神经元中线粒体膜电位。STZ 处理后 3 周,小鼠出现痛觉过敏。与对照组 (0.68±0.122) 相比,DRG 中 p53 表达明显增加 (STZ 组,1.88±0.21),而 parkin 表达明显降低 (对照组,1.02±0.17;STZ 组,0.59±0.14)。pifithrin-α 抑制 p53 可预防 STZ 诱导的痛觉过敏和 parkin 下调。pifithrin-α 还抑制了 STZ 诱导的线粒体数量减少和线粒体 ROS 积累。甲基乙二醛引起痛觉过敏和 p53/parkin 表达改变,类似于 STZ。甲基乙二醛还降低了培养的 DRG 神经元中线粒体膜电位。p53/parkin 表达的改变导致线粒体功能障碍和 ROS 积累,从而导致糖尿病或甲基乙二醛处理的小鼠痛觉过敏。甲基乙二醛通过对 DRG 神经元的直接作用,产生类似于糖尿病的神经紊乱。