Suppr超能文献

利用力导向图可视化蛋白质序列空间及其在同源建模目标-模板对选择中的应用。

Visualization of protein sequence space with force-directed graphs, and their application to the choice of target-template pairs for homology modelling.

作者信息

Mead Dylan J T, Lunagomez Simón, Gatherer Derek

机构信息

Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK.

Department of Mathematics & Statistics, Lancaster University, Lancaster, LA1 4YF, UK.

出版信息

J Mol Graph Model. 2019 Nov;92:180-191. doi: 10.1016/j.jmgm.2019.07.014. Epub 2019 Jul 26.

Abstract

The protein sequence-structure gap results from the contrast between rapid, low-cost deep sequencing, and slow, expensive experimental structure determination techniques. Comparative homology modelling may have the potential to close this gap by predicting protein structure in target sequences using existing experimentally solved structures as templates. This paper presents the first use of force-directed graphs for the visualization of sequence space in two dimensions, and applies them to the choice of suitable RNA-dependent RNA polymerase (RdRP) target-template pairs within human-infective RNA virus genera. Measures of centrality in protein sequence space for each genus were also derived and used to identify centroid nearest-neighbour sequences (CNNs) potentially useful for production of homology models most representative of their genera. Homology modelling was then carried out for target-template pairs in different species, different genera and different families, and model quality assessed using several metrics. Reconstructed ancestral RdRP sequences for individual genera were also used as templates for the production of ancestral RdRP homology models. High quality ancestral RdRP models were consistently produced, as were good quality models for target-template pairs in the same genus. Homology modelling between genera in the same family produced mixed results and inter-family modelling was unreliable. We present a protocol for the production of optimal RdRP homology models for use in further experiments, e.g. docking to discover novel anti-viral compounds. (219 words).

摘要

蛋白质序列与结构之间的差距源于快速、低成本的深度测序与缓慢、昂贵的实验结构测定技术之间的差异。比较同源建模可能有潜力通过以现有的实验解析结构为模板预测目标序列中的蛋白质结构来缩小这一差距。本文首次使用力导向图在二维中可视化序列空间,并将其应用于在人类感染性RNA病毒属内选择合适的RNA依赖性RNA聚合酶(RdRP)目标-模板对。还推导了每个属在蛋白质序列空间中的中心性度量,并用于识别可能有助于生成最能代表其属的同源模型的质心最近邻序列(CNN)。然后对不同物种、不同属和不同科的目标-模板对进行同源建模,并使用多种指标评估模型质量。各个属的重建祖先RdRP序列也被用作生成祖先RdRP同源模型的模板。始终能生成高质量的祖先RdRP模型,同一属内的目标-模板对也能生成高质量的模型。同一家族内不同属之间的同源建模产生了混合结果,而跨家族建模则不可靠。我们提出了一个用于生成最佳RdRP同源模型的方案,以供进一步实验使用,例如对接以发现新型抗病毒化合物。 (219字)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d549/7110651/0bc245b59404/fx1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验