Liang Yongfu, Huang Xiaoli, Huang Yanping, Wang Xin, Li Fangfei, Wang Youchun, Tian Fubo, Liu Bingbing, Shen Ze Xiang, Cui Tian
State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 P. R. China.
Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nangyang Technological University 637371 Singapore.
Adv Sci (Weinh). 2019 May 20;6(14):1900399. doi: 10.1002/advs.201900399. eCollection 2019 Jul 17.
Pressure-induced electronic structure transition from insulating phase to metal state is a potential new paradigm for halide perovskites. The metallization based on these materials may afford a novel motif toward realizing new electronic properties even superconductivity phenomenon. Herein, how static compression modulates the crystal and electronic structure of typical perovskite semiconductors cesium lead iodine (CsPbI) by both experimental and theoretical studies is reported. The comprehensive studies discover the insulator-metal transition of CsPbI at 39.3 GPa, and reveal the key information behind the electronic transition. The perovskite's precise structural evolution is tracked upon compression, from orthorhombic phase to monoclinic structure before the metallic transition. More interestingly, the phase has the most distorted octahedra and the shortest Pb-I bond length relative to the average bond length that is ever reported in a halide perovskite structure. The electronic transition stems from the structural changes accompanied by the anomalously self-distorted octahedra. These studies show that pressure can significantly alter the structural and electronic properties of these technologically important perovskites.
压力诱导的从绝缘相到金属态的电子结构转变是卤化物钙钛矿潜在的新范式。基于这些材料的金属化可能为实现新的电子特性甚至超导现象提供一种新的模式。在此,通过实验和理论研究报道了静态压缩如何调节典型钙钛矿半导体铯铅碘(CsPbI)的晶体结构和电子结构。综合研究发现CsPbI在39.3 GPa时发生绝缘体-金属转变,并揭示了电子转变背后的关键信息。在压缩过程中追踪钙钛矿精确的结构演变,从正交相到金属转变前的单斜结构。更有趣的是,相对于卤化物钙钛矿结构中报道过的平均键长,该相具有最扭曲的八面体和最短的Pb-I键长。电子转变源于伴随异常自扭曲八面体的结构变化。这些研究表明,压力可以显著改变这些具有重要技术意义的钙钛矿的结构和电子特性。