Marini Federica, Rawal Chetan C, Liberi Giordano, Pellicioli Achille
Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy.
Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Pavia, Italy.
Front Mol Biosci. 2019 Jul 16;6:55. doi: 10.3389/fmolb.2019.00055. eCollection 2019.
In all the eukaryotic cells, nucleolytic processing (resection) of a double strand DNA break (DSB) is a key step to channel the repair of the lesion toward the homologous recombination, at the expenses of the non-homologous end joining (NHEJ). The coordinated action of several nucleases and helicases generates 3' single strand (ss) DNA, which is covered by RPA and recombination factors. Molecular details of the process have been first dissected in the model organism . When DSB ends are occupied by KU, a central component of the NHEJ, the Mre11-Rad50-Xrs2 (MRX) nuclease complex (MRN in human), aided by the associated factors Sae2 (CTIP in human), initiates the resection process, inducing a nick close to the DSB ends. Then, starting from the nick, the nucleases Mre11, Exo1, Dna2, in cooperation with Sgs1 helicase (BLM in human), degrade DNA strand in both the directions, creating the 3' ssDNA filament. Multiple levels of regulation of the break processing ensure faithful DSB repair, preventing chromosome rearrangements, and genome instability. Here we review the DSB resection process and its regulation in the context of chromatin. Particularly, we focus on proteins that limit DSB resection, acting as physical barriers toward nucleases and helicases. Moreover, we also take into consideration recent evidence regarding functional interplay between DSB repair and RNA molecules nearby the break site.
在所有真核细胞中,双链DNA断裂(DSB)的核酸olytic加工(切除)是引导损伤修复走向同源重组的关键步骤,代价是非同源末端连接(NHEJ)。几种核酸酶和解旋酶的协同作用产生3'单链(ss)DNA,其被RPA和重组因子覆盖。该过程的分子细节首先在模式生物中被剖析。当DSB末端被NHEJ的核心成分KU占据时,Mre11-Rad50-Xrs2(MRX)核酸酶复合物(人类中的MRN)在相关因子Sae2(人类中的CTIP)的辅助下启动切除过程,在DSB末端附近诱导一个切口。然后,从切口开始,核酸酶Mre11、Exo1、Dna2与Sgs1解旋酶(人类中的BLM)合作,在两个方向上降解DNA链,形成3' ssDNA细丝。断裂加工的多层次调控确保了DSB的忠实修复,防止染色体重排和基因组不稳定。在这里,我们在染色质的背景下综述DSB切除过程及其调控。特别地,我们关注限制DSB切除的蛋白质,它们作为核酸酶和解旋酶的物理屏障。此外,我们还考虑了关于断裂位点附近DSB修复与RNA分子之间功能相互作用的最新证据。