Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom and Francis Crick Institute, London, United Kingdom.
PLoS Comput Biol. 2019 Aug 5;15(8):e1007226. doi: 10.1371/journal.pcbi.1007226. eCollection 2019 Aug.
We have previously shown that the physiological size of postsynaptic currents maximises energy efficiency rather than information transfer across the retinothalamic relay synapse. Here, we investigate information transmission and postsynaptic energy use at the next synapse along the visual pathway: from relay neurons in the thalamus to spiny stellate cells in layer 4 of the primary visual cortex (L4SS). Using both multicompartment Hodgkin-Huxley-type simulations and electrophysiological recordings in rodent brain slices, we find that increasing or decreasing the postsynaptic conductance of the set of thalamocortical inputs to one L4SS cell decreases the energy efficiency of information transmission from a single thalamocortical input. This result is obtained in the presence of random background input to the L4SS cell from excitatory and inhibitory corticocortical connections, which were simulated (both excitatory and inhibitory) or injected experimentally using dynamic-clamp (excitatory only). Thus, energy efficiency is not a unique property of strong relay synapses: even at the relatively weak thalamocortical synapse, each of which contributes minimally to the output firing of the L4SS cell, evolutionarily-selected postsynaptic properties appear to maximise the information transmitted per energy used.
我们之前已经证明,在视网膜-丘脑中继突触中,突触后电流的生理大小使能量效率最大化,而不是信息传递。在这里,我们研究了沿着视觉通路的下一个突触的信息传递和突触后能量利用:从丘脑的中继神经元到初级视觉皮层(L4SS)的棘状星形细胞。我们使用多室 Hodgkin-Huxley 型模拟和啮齿动物脑片的电生理记录,发现增加或减少一个 L4SS 细胞的一组丘脑皮质输入的突触后电导会降低来自单个丘脑皮质输入的信息传递的能量效率。在来自兴奋性和抑制性皮质皮质连接的随机背景输入存在的情况下获得了这一结果,这些连接是通过模拟(兴奋性和抑制性)或使用动态钳(仅兴奋性)进行实验注入的。因此,能量效率不是强中继突触的独特特性:即使在相对较弱的丘脑皮质突触中,每个突触对 L4SS 细胞的输出放电的贡献最小,进化选择的突触后特性似乎使每单位能量传递的信息量最大化。