Coggan Jay S, Calì Corrado, Keller Daniel, Agus Marco, Boges Daniya, Abdellah Marwan, Kare Kalpana, Lehväslaiho Heikki, Eilemann Stefan, Jolivet Renaud Blaise, Hadwiger Markus, Markram Henry, Schürmann Felix, Magistretti Pierre J
Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Front Neurosci. 2018 Sep 25;12:664. doi: 10.3389/fnins.2018.00664. eCollection 2018.
One will not understand the brain without an integrated exploration of structure and function, these attributes being two sides of the same coin: together they form the currency of biological computation. Accordingly, biologically realistic models require the re-creation of the architecture of the cellular components in which biochemical reactions are contained. We describe here a process of reconstructing a functional oligocellular assembly that is responsible for energy supply management in the brain and creating a computational model of the associated biochemical and biophysical processes. The reactions that underwrite thought are both constrained by and take advantage of brain morphologies pertaining to neurons, astrocytes and the blood vessels that deliver oxygen, glucose and other nutrients. Each component of this neuro-glio-vasculature ensemble (NGV) carries-out delegated tasks, as the dynamics of this system provide for each cell-type its own energy requirements while including mechanisms that allow cooperative energy transfers. Our process for recreating the ultrastructure of cellular components and modeling the reactions that describe energy flow uses an amalgam of state-of the-art techniques, including digital reconstructions of electron micrographs, advanced data analysis tools, computational simulations and visualization software. While we demonstrate this process with the NGV, it is equally well adapted to any cellular system for integrating multimodal cellular data in a coherent framework.
如果不综合探索结构与功能,就无法理解大脑,因为这些特性是同一枚硬币的两面:它们共同构成了生物计算的要素。因此,具有生物学现实意义的模型需要重新构建包含生化反应的细胞成分的结构。我们在此描述了一个重建负责大脑能量供应管理的功能性少细胞组件的过程,并创建了相关生化和生物物理过程的计算模型。支撑思维的反应既受与神经元、星形胶质细胞以及输送氧气、葡萄糖和其他营养物质的血管相关的大脑形态的限制,又利用了这些形态。这个神经 - 胶质 - 血管系统(NGV)的每个组件都执行特定的任务,因为该系统的动态变化为每种细胞类型提供了自身的能量需求,同时包含允许协同能量转移的机制。我们重建细胞成分超微结构以及对描述能量流动的反应进行建模的过程,使用了多种先进技术的组合,包括电子显微镜图像的数字重建、先进的数据分析工具、计算模拟和可视化软件。虽然我们以NGV为例展示了这个过程,但它同样适用于任何将多模态细胞数据整合到一个连贯框架中的细胞系统。