Daelman Nathan, Capdevila-Cortada Marçal, López Núria
Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain.
Nat Mater. 2019 Nov;18(11):1215-1221. doi: 10.1038/s41563-019-0444-y. Epub 2019 Aug 5.
The catalytic activity of metals supported on oxides depends on their charge and oxidation state. Yet, the determination of the degree of charge transfer at the interface remains elusive. Here, by combining density functional theory and first-principles molecular dynamics on Pt single atoms deposited on the CeO (100) surface, we show that the common representation of a static metal charge is oversimplified. Instead, we identify several well-defined charge states that are dynamically interconnected and thus coexist. The origin of this new class of strong metal-support interactions is the relative position of the Ce(4f) levels with respect to those of the noble metal, allowing electron injection to (or recovery from) the support. This process is phonon-assisted, as the Ce(4f) levels adjust by surface atom displacement, and appears for other metals (Ni) and supports (TiO). Our dynamic model explains the unique reactivity found for activated single Pt atoms on ceria able to perform CO oxidation, meeting the Department of Energy 150 °C challenge for emissions.
负载在氧化物上的金属的催化活性取决于其电荷和氧化态。然而,界面处电荷转移程度的确定仍然难以捉摸。在这里,通过结合密度泛函理论和第一性原理分子动力学,研究沉积在CeO(100)表面的Pt单原子,我们发现静态金属电荷的常见表示过于简化。相反,我们识别出几个定义明确的电荷态,它们动态互连并因此共存。这类新型强金属-载体相互作用的起源是Ce(4f)能级相对于贵金属能级的相对位置,允许电子注入到载体(或从载体中恢复)。这个过程是声子辅助的,因为Ce(4f)能级通过表面原子位移进行调整,并且在其他金属(Ni)和载体(TiO)中也会出现。我们的动态模型解释了在二氧化铈上活化的单个Pt原子能够进行CO氧化所发现的独特反应性,满足了美国能源部150°C排放挑战。