Qu Zhi, Zhang Wenqi, Wang Shuideng, Chen Donglei, Yao Yiqing, Cheng Mingxing, Dong Lixin
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China.
Adv Sci (Weinh). 2025 Jun;12(23):e2500553. doi: 10.1002/advs.202500553. Epub 2025 Apr 26.
Small variations in interatomic distances have a substantial impact on the physical and chemical properties of nanomaterials. Investigating these effects offers a deeper understanding of the mechanisms governing the behavior of nanomaterials and nanostructures, providing foundations for the design and optimization of novel functional materials. However, the impact of strain in single-atom structures on piezoresistance and electronic transport properties remains unclear. This study focuses on a 1D, dynamic functional nanostructure that uses interatomic distance variations for lattice-level strain sensing. This silver (Ag) atom chain shows a high stability at room-temperature and an exceptional piezoresistance coefficient, enabling the detection of structural changes at atomic radius scale with high sampling frequencies. It is considered that this strong piezoresistivity is due to the impact of interatomic distance on electron scattering and transport mechanisms. The density functional theory simulations of electron transport reveal that variations in interatomic distance significantly influence the relaxation time of electron scattering and the effective electron mass, thereby modulating the characteristics of electron transport. This 1D dynamic nanostructure has the potential to address the low time resolution limitations of transmission electron microscopy (TEM), enhancing its capabilities for in situ characterization and multi-physical-field sensing. This study provides experimental evidence for insights into atomic scale piezoresistivity and underlying mechanisms.
原子间距离的微小变化对纳米材料的物理和化学性质有重大影响。研究这些影响有助于更深入地理解控制纳米材料和纳米结构行为的机制,为新型功能材料的设计和优化提供基础。然而,单原子结构中的应变对压阻和电子输运性质的影响仍不明确。本研究聚焦于一种一维动态功能纳米结构,该结构利用原子间距离变化进行晶格级应变传感。这种银(Ag)原子链在室温下表现出高稳定性和出色的压阻系数,能够以高采样频率检测原子半径尺度的结构变化。据认为,这种强压阻性是由于原子间距离对电子散射和输运机制的影响。电子输运的密度泛函理论模拟表明,原子间距离的变化显著影响电子散射的弛豫时间和有效电子质量,从而调节电子输运特性。这种一维动态纳米结构有可能解决透射电子显微镜(TEM)时间分辨率低的局限性,增强其原位表征和多物理场传感能力。本研究为深入了解原子尺度压阻性及其潜在机制提供了实验证据。