Suppr超能文献

使用机器学习预测基于门控剂量学的调强放射治疗 QA 的伽马通过率。

Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning.

机构信息

Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA.

School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China.

出版信息

Med Phys. 2019 Oct;46(10):4666-4675. doi: 10.1002/mp.13752. Epub 2019 Aug 27.

Abstract

PURPOSE

Intensity-modulated radiation therapy (IMRT) quality assurance (QA) measurements are routinely performed prior to treatment delivery to verify dose calculation and delivery accuracy. In this work, we applied a machine learning-based approach to predict portal dosimetry based IMRT QA gamma passing rates.

METHODS

182 IMRT plans for various treatment sites were planned and delivered with portal dosimetry on two TrueBeam and two Trilogy LINACs. A total of 1497 beams were collected and analyzed using gamma criteria of 2%/2 mm with a 5% threshold. The datasets for building the machine learning models consisted of 1269 beams. Ten-fold cross-validation was utilized to tune the model and prevent "overfitting." A separate test set with the remaining 228 beams was used to evaluate model performance. Each beam was characterized by a set of 31 features including both plan complexity metrics and machine characteristics. Three tree-based machine learning algorithms (AdaBoost, Random Forest, and XGBoost) were used to train the models and predict gamma passing rates.

RESULTS

Both AdaBoost and Random Forest had 98% of predictions within 3% of the measured 2%/2 mm gamma passing rates with a maximum error less than 4% and a mean absolute error < 1%. XGBoost showed a slightly worse prediction accuracy with 95% of the predictions within 3% of the measured gamma passing rates and a maximum error of 4.5%. The three models identified the same nine features in the top 10 most important ones that are related to plan complexity and maximum aperture displacement from the central axis or the maximum jaw size in a beam.

CONCLUSION

We have demonstrated that portal dosimetry IMRT QA gamma passing rates can be accurately predicted using tree-based ensemble learning models. The machine learning based approach allows physicists to better identify the failures of IMRT QA measurements and to develop proactive QA approaches.

摘要

目的

调强放射治疗(IMRT)质量保证(QA)测量通常在治疗前进行,以验证剂量计算和输送的准确性。在这项工作中,我们应用了基于机器学习的方法来预测基于门户剂量学的 IMRT QA 伽马通过率。

方法

在两台 TrueBeam 和两台 Trilogy LINAC 上为不同的治疗部位规划和输送了 182 个 IMRT 计划,并使用 2%/2mm 的伽马标准和 5%的阈值对 1497 束进行了采集和分析。用于构建机器学习模型的数据集由 1269 束组成。使用十折交叉验证来调整模型并防止“过拟合”。使用其余的 228 束作为单独的测试集来评估模型性能。每束都由一组 31 个特征来描述,包括计划复杂性度量和机器特性。使用三种基于树的机器学习算法(AdaBoost、Random Forest 和 XGBoost)来训练模型并预测伽马通过率。

结果

AdaBoost 和 Random Forest 的预测值都有 98%在测量的 2%/2mm 伽马通过率的 3%以内,最大误差小于 4%,平均绝对误差<1%。XGBoost 的预测精度略差,有 95%的预测值在测量的伽马通过率的 3%以内,最大误差为 4.5%。这三个模型在最重要的前 10 个特征中识别出了相同的 9 个特征,这些特征与计划复杂性以及最大孔径偏离中央轴或最大叶片尺寸有关。

结论

我们已经证明,基于门户剂量学的 IMRT QA 伽马通过率可以使用基于树的集成学习模型准确预测。基于机器学习的方法可以帮助物理学家更好地识别 IMRT QA 测量的失败,并开发主动的 QA 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验