Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany.
Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany.
Cell Rep Methods. 2023 Aug 15;3(8):100560. doi: 10.1016/j.crmeth.2023.100560. eCollection 2023 Aug 28.
In protein design, the energy associated with a huge number of sequence-conformer perturbations has to be routinely estimated. Hence, enhancing the throughput and accuracy of these energy calculations can profoundly improve design success rates and enable tackling more complex design problems. In this work, we explore the possibility of tensorizing the energy calculations and apply them in a protein design framework. We use this framework to design enhanced proteins with anti-cancer and radio-tracing functions. Particularly, we designed multispecific binders against ligands of the epidermal growth factor receptor (EGFR), where the tested design could inhibit EGFR activity and . We also used this method to design high-affinity Cu binders that were stable in serum and could be readily loaded with copper-64 radionuclide. The resulting molecules show superior functional properties for their respective applications and demonstrate the generalizable potential of the described protein design approach.
在蛋白质设计中,必须经常估算与大量序列构象变化相关的能量。因此,提高这些能量计算的通量和准确性可以显著提高设计成功率,并能够解决更复杂的设计问题。在这项工作中,我们探索了张量化能量计算的可能性,并将其应用于蛋白质设计框架中。我们使用这个框架设计具有抗癌和放射性示踪功能的增强型蛋白质。特别地,我们设计了针对表皮生长因子受体 (EGFR) 配体的多特异性结合物,其中经过测试的设计可以抑制 EGFR 活性和 。我们还使用这种方法设计了高亲和力的 Cu 结合物,它们在血清中稳定且可以容易地加载铜-64 放射性核素。所得分子表现出与其各自应用相关的优异功能特性,并证明了所描述的蛋白质设计方法的普遍适用性。