Weiss P M, Chen C Y, Cleland W W, Cook P F
Department of Biochemistry, Texas College of Osteopathic Medicine, North Texas State University, Denton 76203.
Biochemistry. 1988 Jun 28;27(13):4814-22. doi: 10.1021/bi00413a035.
We have used deuterium and 15N isotope effects to study the relative rates of the steps in the mechanisms of alanine and glutamate dehydrogenases. The proposed chemical mechanisms for these enzymes involve carbinolamine formation, imine formation, and reduction of the imine to the amino acid [Grimshaw, C.E., Cook, P.F., & Cleland, W.W. (1981) Biochemistry 20, 5655; Rife, J.E., & Cleland, W.W. (1980) Biochemistry 19, 2328]. These steps are almost equally rate limiting for V/Kammonia with alanine dehydrogenase, while with glutamate dehydrogenase carbinolamine formation, imine formation, and release of glutamate after hydride transfer provide most of the rate limitation of V/Kammonia. Release of oxidized nucleotide is largely rate limiting for Vmax for both enzymes. When beta-hydroxypyruvate replaces pyruvate, or 3-acetylpyridine NADH (Acpyr-NADH) or thio-NADH replaces NADH with alanine dehydrogenase, nucleotide release no longer limits Vmax, and hydride transfer becomes more rate limiting. With glutamate dehydrogenase, replacement of alpha-ketoglutarate by alpha-ketovalerate makes hydride transfer more rate limiting. Use of Acpyr-NADPH has a minimal effect with alpha-ketoglutarate but causes an 8-fold decrease in Vmax with alpha-ketovalerate, with hydride transfer the major rate-limiting step. In contrast, thio-NADPH with either alpha-keto acid causes carbinolamide formation to become almost completely rate limiting. These studies show the power of multiple isotope effects in deducing details of the chemistry and changes in rate-limiting step(s) in complicated reaction mechanisms such as those of alanine and glutamate dehydrogenases.
我们利用氘和15N同位素效应来研究丙氨酸脱氢酶和谷氨酸脱氢酶作用机制中各步骤的相对速率。这些酶的化学作用机制包括甲醇胺形成、亚胺形成以及亚胺还原为氨基酸[格林肖,C.E.,库克,P.F.,&克莱兰,W.W.(1981年)《生物化学》20,5655;里夫,J.E.,&克莱兰,W.W.(1980年)《生物化学》19,2328]。对于丙氨酸脱氢酶,这些步骤对V/K氨的速率限制几乎相同,而对于谷氨酸脱氢酶,甲醇胺形成、亚胺形成以及氢化物转移后谷氨酸的释放是V/K氨速率限制的主要因素。氧化型核苷酸的释放对两种酶的Vmax在很大程度上起速率限制作用。当β-羟基丙酮酸替代丙酮酸,或者3-乙酰吡啶NADH(Acpyr-NADH)或硫代-NADH替代丙氨酸脱氢酶的NADH时,核苷酸释放不再限制Vmax,氢化物转移变得更具速率限制作用。对于谷氨酸脱氢酶,用α-酮戊酸替代α-酮戊二酸会使氢化物转移更具速率限制作用。使用Acpyr-NADPH对α-酮戊二酸影响极小,但会使α-酮戊酸的Vmax降低8倍,氢化物转移是主要的限速步骤。相比之下,硫代-NADPH与任何一种α-酮酸都会使甲醇酰胺形成几乎完全成为速率限制因素。这些研究表明,多重同位素效应在推导复杂反应机制(如丙氨酸脱氢酶和谷氨酸脱氢酶的反应机制)的化学细节和限速步骤变化方面具有强大作用。