Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1448-1457. doi: 10.1093/jamia/ocz127.
Clinical prediction models require updating as performance deteriorates over time. We developed a testing procedure to select updating methods that minimizes overfitting, incorporates uncertainty associated with updating sample sizes, and is applicable to both parametric and nonparametric models.
We describe a procedure to select an updating method for dichotomous outcome models by balancing simplicity against accuracy. We illustrate the test's properties on simulated scenarios of population shift and 2 models based on Department of Veterans Affairs inpatient admissions.
In simulations, the test generally recommended no update under no population shift, no update or modest recalibration under case mix shifts, intercept correction under changing outcome rates, and refitting under shifted predictor-outcome associations. The recommended updates provided superior or similar calibration to that achieved with more complex updating. In the case study, however, small update sets lead the test to recommend simpler updates than may have been ideal based on subsequent performance.
Our test's recommendations highlighted the benefits of simple updating as opposed to systematic refitting in response to performance drift. The complexity of recommended updating methods reflected sample size and magnitude of performance drift, as anticipated. The case study highlights the conservative nature of our test.
This new test supports data-driven updating of models developed with both biostatistical and machine learning approaches, promoting the transportability and maintenance of a wide array of clinical prediction models and, in turn, a variety of applications relying on modern prediction tools.
临床预测模型的性能随着时间的推移而恶化,因此需要进行更新。我们开发了一种测试程序,用于选择更新方法,该方法最大限度地减少过度拟合,纳入与更新样本量相关的不确定性,并且适用于参数和非参数模型。
我们描述了一种通过平衡简单性和准确性来选择二分类结局模型更新方法的程序。我们通过人口转移和基于退伍军人事务部住院患者入院的 2 个模型的模拟场景说明了该测试的特性。
在模拟中,该测试通常在没有人口转移的情况下建议不进行更新,在病例组合转移的情况下建议不更新或适度重新校准,在结局率变化的情况下建议进行截距校正,在预测变量-结局关联转移的情况下建议重新拟合。推荐的更新提供了优于或类似于更复杂更新的校准。然而,在案例研究中,小的更新集导致测试建议使用比后续性能可能理想的更简单的更新。
我们的测试建议强调了简单更新相对于系统重新拟合以应对性能漂移的好处。推荐更新方法的复杂性反映了样本量和性能漂移的幅度,正如预期的那样。案例研究突出了我们测试的保守性质。
这项新测试支持使用生物统计学和机器学习方法开发的模型的数据驱动更新,促进了广泛的临床预测模型的可移植性和维护,进而促进了依赖现代预测工具的各种应用。