Suppr超能文献

预测模型性能更新协议的比较:使用数据驱动的测试程序来指导更新

Comparison of Prediction Model Performance Updating Protocols: Using a Data-Driven Testing Procedure to Guide Updating.

作者信息

Davis Sharon E, Greevy Robert A, Lasko Thomas A, Walsh Colin G, Matheny Michael E

机构信息

Vanderbilt University School of Medicine, Nashville, TN.

出版信息

AMIA Annu Symp Proc. 2020 Mar 4;2019:1002-1010. eCollection 2019.

Abstract

In evolving clinical environments, the accuracy of prediction models deteriorates over time. Guidance on the design of model updating policies is limited, and there is limited exploration of the impact of different policies on future model performance and across different model types. We implemented a new data-driven updating strategy based on a nonparametric testing procedure and compared this strategy to two baseline approaches in which models are never updated or fully refit annually. The test-based strategy generally recommended intermittent recalibration and delivered more highly calibrated predictions than either of the baseline strategies. The test-based strategy highlighted differences in the updating requirements between logistic regression, L1-regularized logistic regression, random forest, and neural network models, both in terms of the extent and timing of updates. These findings underscore the potential improvements in using a data-driven maintenance approach over "one-size fits all" to sustain more stable and accurate model performance over time.

摘要

在不断演变的临床环境中,预测模型的准确性会随着时间推移而下降。关于模型更新策略设计的指导有限,并且对于不同策略对未来模型性能以及不同模型类型的影响的探索也很有限。我们基于非参数检验程序实施了一种新的数据驱动更新策略,并将该策略与两种基线方法进行比较,在这两种基线方法中,模型从不更新或每年完全重新拟合。基于检验的策略通常建议进行间歇性重新校准,并且比任何一种基线策略都能提供校准度更高的预测。基于检验的策略突出了逻辑回归、L1正则化逻辑回归、随机森林和神经网络模型在更新要求方面的差异,包括更新的程度和时间。这些发现强调了采用数据驱动的维护方法而非“一刀切”方法在随着时间推移维持更稳定和准确的模型性能方面的潜在改进。

相似文献

2
A nonparametric updating method to correct clinical prediction model drift.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1448-1457. doi: 10.1093/jamia/ocz127.
3
Calibration Drift Among Regression and Machine Learning Models for Hospital Mortality.
AMIA Annu Symp Proc. 2018 Apr 16;2017:625-634. eCollection 2017.
4
Comparison of dynamic updating strategies for clinical prediction models.
Diagn Progn Res. 2021 Dec 6;5(1):20. doi: 10.1186/s41512-021-00110-w.
5
A closed testing procedure to select an appropriate method for updating prediction models.
Stat Med. 2017 Dec 10;36(28):4529-4539. doi: 10.1002/sim.7179. Epub 2016 Nov 28.
6
A review of statistical updating methods for clinical prediction models.
Stat Methods Med Res. 2018 Jan;27(1):185-197. doi: 10.1177/0962280215626466. Epub 2016 Jul 26.
7
Maintaining a National Acute Kidney Injury Risk Prediction Model to Support Local Quality Benchmarking.
Circ Cardiovasc Qual Outcomes. 2022 Aug;15(8):e008635. doi: 10.1161/CIRCOUTCOMES.121.008635. Epub 2022 Aug 12.
8
Validation and updating of risk models based on multinomial logistic regression.
Diagn Progn Res. 2017 Feb 8;1:2. doi: 10.1186/s41512-016-0002-x. eCollection 2017.
9
Veterans Affairs intensive care unit risk adjustment model: validation, updating, recalibration.
Crit Care Med. 2008 Apr;36(4):1031-42. doi: 10.1097/CCM.0b013e318169f290.
10
Methods for updating a risk prediction model for cardiac surgery: a statistical primer.
Interact Cardiovasc Thorac Surg. 2019 Mar 1;28(3):333-338. doi: 10.1093/icvts/ivy338.

引用本文的文献

2
International validation of a pre-transplant risk assessment tool for graft survival in pediatric kidney transplant recipients.
Clin Kidney J. 2025 Jan 28;18(3):sfaf031. doi: 10.1093/ckj/sfaf031. eCollection 2025 Mar.
3
Monitoring performance of clinical artificial intelligence in health care: a scoping review.
JBI Evid Synth. 2024 Dec 1;22(12):2423-2446. doi: 10.11124/JBIES-24-00042.
4
Artificial Intelligence in Imaging in the First Trimester of Pregnancy: A Systematic Review.
Fetal Diagn Ther. 2024;51(4):343-356. doi: 10.1159/000538243. Epub 2024 Mar 18.
5
Dynamic updating of clinical survival prediction models in a changing environment.
Diagn Progn Res. 2023 Dec 12;7(1):24. doi: 10.1186/s41512-023-00163-z.
7
Open questions and research gaps for monitoring and updating AI-enabled tools in clinical settings.
Front Digit Health. 2022 Sep 2;4:958284. doi: 10.3389/fdgth.2022.958284. eCollection 2022.
8
Maintaining a National Acute Kidney Injury Risk Prediction Model to Support Local Quality Benchmarking.
Circ Cardiovasc Qual Outcomes. 2022 Aug;15(8):e008635. doi: 10.1161/CIRCOUTCOMES.121.008635. Epub 2022 Aug 12.
9
Comparison of dynamic updating strategies for clinical prediction models.
Diagn Progn Res. 2021 Dec 6;5(1):20. doi: 10.1186/s41512-021-00110-w.

本文引用的文献

1
A nonparametric updating method to correct clinical prediction model drift.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1448-1457. doi: 10.1093/jamia/ocz127.
2
Calibration Drift Among Regression and Machine Learning Models for Hospital Mortality.
AMIA Annu Symp Proc. 2018 Apr 16;2017:625-634. eCollection 2017.
3
Calibration drift in regression and machine learning models for acute kidney injury.
J Am Med Inform Assoc. 2017 Nov 1;24(6):1052-1061. doi: 10.1093/jamia/ocx030.
4
A closed testing procedure to select an appropriate method for updating prediction models.
Stat Med. 2017 Dec 10;36(28):4529-4539. doi: 10.1002/sim.7179. Epub 2016 Nov 28.
5
A calibration hierarchy for risk models was defined: from utopia to empirical data.
J Clin Epidemiol. 2016 Jun;74:167-76. doi: 10.1016/j.jclinepi.2015.12.005. Epub 2016 Jan 6.
6
A spline-based tool to assess and visualize the calibration of multiclass risk predictions.
J Biomed Inform. 2015 Apr;54:283-93. doi: 10.1016/j.jbi.2014.12.016. Epub 2015 Jan 9.
9
Flexible recalibration of binary clinical prediction models.
Stat Med. 2013 Jan 30;32(2):282-9. doi: 10.1002/sim.5544. Epub 2012 Jul 30.
10
Statistical process control for monitoring standardized mortality ratios of a classification tree model.
Methods Inf Med. 2012;51(4):353-8. doi: 10.3414/ME11-02-0044. Epub 2012 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验