Davis Sharon E, Greevy Robert A, Lasko Thomas A, Walsh Colin G, Matheny Michael E
Vanderbilt University School of Medicine, Nashville, TN.
AMIA Annu Symp Proc. 2020 Mar 4;2019:1002-1010. eCollection 2019.
In evolving clinical environments, the accuracy of prediction models deteriorates over time. Guidance on the design of model updating policies is limited, and there is limited exploration of the impact of different policies on future model performance and across different model types. We implemented a new data-driven updating strategy based on a nonparametric testing procedure and compared this strategy to two baseline approaches in which models are never updated or fully refit annually. The test-based strategy generally recommended intermittent recalibration and delivered more highly calibrated predictions than either of the baseline strategies. The test-based strategy highlighted differences in the updating requirements between logistic regression, L1-regularized logistic regression, random forest, and neural network models, both in terms of the extent and timing of updates. These findings underscore the potential improvements in using a data-driven maintenance approach over "one-size fits all" to sustain more stable and accurate model performance over time.
在不断演变的临床环境中,预测模型的准确性会随着时间推移而下降。关于模型更新策略设计的指导有限,并且对于不同策略对未来模型性能以及不同模型类型的影响的探索也很有限。我们基于非参数检验程序实施了一种新的数据驱动更新策略,并将该策略与两种基线方法进行比较,在这两种基线方法中,模型从不更新或每年完全重新拟合。基于检验的策略通常建议进行间歇性重新校准,并且比任何一种基线策略都能提供校准度更高的预测。基于检验的策略突出了逻辑回归、L1正则化逻辑回归、随机森林和神经网络模型在更新要求方面的差异,包括更新的程度和时间。这些发现强调了采用数据驱动的维护方法而非“一刀切”方法在随着时间推移维持更稳定和准确的模型性能方面的潜在改进。