Suppr超能文献

谷胱甘肽耗竭诱导肿瘤特异性氧化应激扩增及芬顿纳米试剂用于增强化学动力学治疗。

Tumor-Specific Expansion of Oxidative Stress by Glutathione Depletion and Use of a Fenton Nanoagent for Enhanced Chemodynamic Therapy.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30551-30565. doi: 10.1021/acsami.9b09323. Epub 2019 Aug 14.

Abstract

Amplifying intracellular oxidative stress effectively destroys cancer cells. In addition, iron-mediated Fenton reaction converts endogenous HO to produce hypertoxic hydroxyl radical (OH), resulting in irreversible oxidative damage to combat tumor cells. This method is known as chemodynamic therapy (CDT). Overexpressed glutathione (GSH) in tumor cells efficiently scavenges OH, significantly reducing the curative effects of CDT. To overcome this challenge and enhance intracellular oxidative stress, iron oxide nanocarriers loaded with β-lapachone (Lapa) drugs (FeO-HSA@Lapa) were constructed and had both Fenton-like agents and GSH depletion properties to amplify intracellular oxidative stress. Release of Lapa selectively increases tumor site-specific generation of HO via NAD(P)H: quinone oxidoreductase 1 (NQO1) catalysis. Subsequently, the iron ions released from the ionization of FeO in the acidic environment selectively convert HO into highly toxic OH by Fenton reaction, dramatically improving CDT with minimal systemic toxicity due to low NQO1 expression in normal tissues. Meanwhile, released Lapa consumes GSH in the tumor, amplifying oxidative stress and enhancing the efficacy of CDT. Designed FeO-HSA@Lapa nanoparticles (NPs) exhibit perfect targeting capability, prolonged blood circulation, and increased tumor accumulation. Furthermore, FeO-HSA@Lapa NPs effectively enhance the inhibition of tumor growth and reduce the side effects of anticancer drugs. This work establishes a remarkably enhanced tumor-selective CDT against NQO1-overexpressing tumors by significantly inducing intratumoral oxidative stress with minimal side effects.

摘要

增强细胞内氧化应激能有效地破坏癌细胞。此外,铁介导的芬顿反应将内源性 HO 转化为产生超毒性羟基自由基 (OH),导致肿瘤细胞的不可逆氧化损伤。这种方法被称为化学动力学疗法 (CDT)。肿瘤细胞中过表达的谷胱甘肽 (GSH) 能有效地清除 OH,显著降低 CDT 的疗效。为了克服这一挑战并增强细胞内氧化应激,构建了负载β-拉帕酮 (Lapa) 药物的氧化铁纳米载体 (FeO-HSA@Lapa),具有类芬顿试剂和 GSH 耗竭特性,可放大细胞内氧化应激。Lapa 的释放通过 NAD(P)H:醌氧化还原酶 1 (NQO1) 催化选择性增加肿瘤部位 HO 的生成。随后,在酸性环境中 FeO 的离解释放的铁离子通过芬顿反应选择性地将 HO 转化为高毒性的 OH,由于正常组织中 NQO1 表达水平低,显著提高了 CDT 的疗效,同时最小化了系统毒性。同时,释放的 Lapa 消耗肿瘤中的 GSH,放大氧化应激,增强 CDT 的疗效。设计的 FeO-HSA@Lapa 纳米颗粒 (NPs) 表现出完美的靶向能力、延长的血液循环和增加的肿瘤积累。此外,FeO-HSA@Lapa NPs 有效地增强了对肿瘤生长的抑制作用,并降低了抗癌药物的副作用。这项工作通过最小化副作用显著诱导肿瘤内氧化应激,建立了一种针对 NQO1 过表达肿瘤的显著增强的肿瘤选择性 CDT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验