文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症治疗的先进纳米材料:金、银和氧化铁纳米颗粒在肿瘤学中的应用

Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications.

作者信息

Singh Priyanka, Pandit Santosh, Balusamy Sri Renukadevi, Madhusudanan Mukil, Singh Hina, Amsath Haseef H Mohamed, Mijakovic Ivan

机构信息

The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Kogens Lyngby, DK-2800, Denmark.

Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

出版信息

Adv Healthc Mater. 2025 Feb;14(4):e2403059. doi: 10.1002/adhm.202403059. Epub 2024 Nov 6.


DOI:10.1002/adhm.202403059
PMID:39501968
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11804848/
Abstract

Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.

摘要

癌症仍然是全球最具挑战性的健康问题之一,需要创新的治疗方法来进行有效治疗。纳米颗粒,特别是由金、银和氧化铁组成的纳米颗粒,已成为改变癌症治疗方式的有前途的候选者。这篇全面的综述展示了基于纳米颗粒的肿瘤学干预的概况,重点关注金、银和氧化铁纳米颗粒的显著进展和治疗潜力。金纳米颗粒因其卓越的生物相容性、可调节的表面化学性质和独特的光学性质而备受关注,使其成为各种癌症诊断和治疗策略的理想候选者。银纳米颗粒以其抗菌特性而闻名,通过多种机制在癌症治疗中展现出显著潜力,包括诱导细胞凋亡、抑制血管生成和增强药物递送。氧化铁纳米颗粒凭借其磁性和生物相容性,提供了独特的癌症诊断和靶向治疗机会。本综述批判性地审视了这些纳米颗粒在癌症治疗中的合成、功能化和生物医学应用方面的最新进展。此外,还讨论了相关挑战,包括毒性问题、免疫原性和转化障碍,并强调了为克服这些障碍而正在进行的努力。最后,提供了对基于纳米颗粒的癌症治疗未来方向和监管考量的见解,旨在加速这些有前景的技术从实验室到临床的转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/df0dca867a96/ADHM-14-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/3947c1d72abc/ADHM-14-0-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/ae5101730d98/ADHM-14-0-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/0279d18ef136/ADHM-14-0-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/5a9ed559f25f/ADHM-14-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/d91108f86e57/ADHM-14-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/97f71a689c3b/ADHM-14-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/96ffe09314e7/ADHM-14-0-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/efee4ad07723/ADHM-14-0-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/37587370f7a3/ADHM-14-0-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/d1fc3f9a8569/ADHM-14-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/79043b34bbbf/ADHM-14-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/a05dca7d3713/ADHM-14-0-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/981e5b0b560a/ADHM-14-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/23ae3374c2ed/ADHM-14-0-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/5774532079ac/ADHM-14-0-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/e3b5f2571197/ADHM-14-0-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/627b1c5c68aa/ADHM-14-0-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/df0dca867a96/ADHM-14-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/3947c1d72abc/ADHM-14-0-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/ae5101730d98/ADHM-14-0-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/0279d18ef136/ADHM-14-0-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/5a9ed559f25f/ADHM-14-0-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/d91108f86e57/ADHM-14-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/97f71a689c3b/ADHM-14-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/96ffe09314e7/ADHM-14-0-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/efee4ad07723/ADHM-14-0-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/37587370f7a3/ADHM-14-0-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/d1fc3f9a8569/ADHM-14-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/79043b34bbbf/ADHM-14-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/a05dca7d3713/ADHM-14-0-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/981e5b0b560a/ADHM-14-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/23ae3374c2ed/ADHM-14-0-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/5774532079ac/ADHM-14-0-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/e3b5f2571197/ADHM-14-0-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/627b1c5c68aa/ADHM-14-0-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29d/11804848/df0dca867a96/ADHM-14-0-g001.jpg

相似文献

[1]
Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications.

Adv Healthc Mater. 2025-2

[2]
Recent advances in gold and silver nanoparticles: synthesis and applications.

J Nanosci Nanotechnol. 2014-7

[3]
Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications.

Top Curr Chem (Cham). 2020-1-7

[4]
A review of small molecules and drug delivery applications using gold and iron nanoparticles.

Int J Nanomedicine. 2019-3-11

[5]
Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases.

Nanomedicine. 2021-8

[6]
Magnetic iron oxide nanoparticles for tumor-targeted therapy.

Curr Cancer Drug Targets. 2011-2

[7]
Theranostic Nanoparticles for RNA-Based Cancer Treatment.

Acc Chem Res. 2019-5-28

[8]
Advances in Atherosclerosis Theranostics Harnessing Iron Oxide-Based Nanoparticles.

Adv Sci (Weinh). 2024-5

[9]
Gold and Silver Nanoparticles for Applications in Theranostics.

Curr Top Med Chem. 2016

[10]
Recent Advances in the Use of Metallic Nanoparticles with Antitumoral Action - Review.

Curr Med Chem. 2019

引用本文的文献

[1]
Synergistic Ferroptosis-Immunotherapy Nanoplatforms: Multidimensional Engineering for Tumor Microenvironment Remodeling and Therapeutic Optimization.

Nanomicro Lett. 2025-9-2

[2]
Folate-Modified Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and In Vitro PDT Treatment of Breast Cancer Cell Lines.

Pharmaceutics. 2025-7-30

[3]
Nanomaterials engineered for photothermal therapy in neural tumors and neurodegenerative diseases: biomaterial design, clinical mechanisms and applications.

Front Bioeng Biotechnol. 2025-7-21

[4]
Tailoring innovative silver nanoparticles for modern medicine: The importance of size and shape control and functional modifications.

Mater Today Bio. 2025-7-9

[5]
Novel Green Synthesis Route of ZnO Nanoparticles for Dielectric Applications.

Nanomaterials (Basel). 2025-6-26

[6]
Bionic Bovine Achilles Tendon Collagen Composite Membrane Loaded with Anti-Inflammatory Kukoamine B Promotes Skin Wound Healing.

Polymers (Basel). 2025-7-4

[7]
Highly selective silver ion detection using N-doped carbon dots from Clerodendrum wallichii petals.

Sci Rep. 2025-7-1

[8]
Advances in nanocarrier-mediated cancer therapy: Progress in immunotherapy, chemotherapy, and radiotherapy.

Chin Med J (Engl). 2025-8-20

[9]
Immunopharmacology of gastric cancer-deciphering immune cell subset responses and nanoparticle-mediated targeting.

Front Pharmacol. 2025-5-19

[10]
Golden insights for exploring cancer: delivery, from genes to the human body using bimetallic Au/Ag nanostructures.

Discov Oncol. 2025-5-25

本文引用的文献

[1]
Engineering nanomedicines for immunogenic eradication of cancer cells: Recent trends and synergistic approaches.

Acta Pharm Sin B. 2024-6

[2]
Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review.

Int J Mol Sci. 2024-4-5

[3]
SERS in 3D cell models: a powerful tool in cancer research.

Chem Soc Rev. 2024-5-20

[4]
[Not Available].

Ugeskr Laeger. 2024-3-18

[5]
Radiolabeled multi-layered coated gold nanoparticles as potential biocompatible PET/SPECT tracers.

J Mater Chem B. 2024-4-17

[6]
Simultaneous photoacoustic and ultrasound imaging: A review.

Ultrasonics. 2024-4

[7]
Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies.

Signal Transduct Target Ther. 2024-3-8

[8]
Recent Developments in Nanotechnology and Immunotherapy for the Diagnosis and Treatment of Pancreatic Cancer.

Curr Pharm Biotechnol. 2025

[9]
Doxorubicin Conjugated γ-Globulin Functionalised Gold Nanoparticles: A pH-Responsive Bioinspired Nanoconjugate Approach for Advanced Chemotherapeutics.

Pharmaceutics. 2024-1-31

[10]
culture derived silver nanoparticles exert potent anticancer action in 2D and 3D models of lung cancer via mitochondrial depolarization-mediated apoptosis.

Mater Today Bio. 2024-2-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索