文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy.

作者信息

Sheikh Afsana, Kesharwani Prashant, Almalki Waleed H, Almujri Salem Salman, Dai Linxin, Chen Zhe-Sheng, Sahebkar Amirhossein, Gao Fei

机构信息

Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.

出版信息

Nanomicro Lett. 2024 May 2;16(1):188. doi: 10.1007/s40820-024-01399-0.


DOI:10.1007/s40820-024-01399-0
PMID:38698113
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11065855/
Abstract

As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/aceecedfc0e1/40820_2024_1399_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/a26e06569046/40820_2024_1399_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/3908a019c0ae/40820_2024_1399_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/7f828f1aa3f5/40820_2024_1399_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/8a7fdf8e9469/40820_2024_1399_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/41e674d521aa/40820_2024_1399_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/36a3d2064020/40820_2024_1399_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/c6fad54cce7d/40820_2024_1399_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/60f7dd47e6ba/40820_2024_1399_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/177c2dd7a28e/40820_2024_1399_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/b772ff49f502/40820_2024_1399_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/5fc32a1c3be2/40820_2024_1399_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/01430b4b3811/40820_2024_1399_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/3a705c78f3e2/40820_2024_1399_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/8e6717092abb/40820_2024_1399_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/a6860fbbcd58/40820_2024_1399_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/292a89ec60ba/40820_2024_1399_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/aceecedfc0e1/40820_2024_1399_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/a26e06569046/40820_2024_1399_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/3908a019c0ae/40820_2024_1399_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/7f828f1aa3f5/40820_2024_1399_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/8a7fdf8e9469/40820_2024_1399_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/41e674d521aa/40820_2024_1399_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/36a3d2064020/40820_2024_1399_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/c6fad54cce7d/40820_2024_1399_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/60f7dd47e6ba/40820_2024_1399_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/177c2dd7a28e/40820_2024_1399_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/b772ff49f502/40820_2024_1399_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/5fc32a1c3be2/40820_2024_1399_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/01430b4b3811/40820_2024_1399_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/3a705c78f3e2/40820_2024_1399_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/8e6717092abb/40820_2024_1399_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/a6860fbbcd58/40820_2024_1399_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/292a89ec60ba/40820_2024_1399_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af85/11065855/aceecedfc0e1/40820_2024_1399_Fig17_HTML.jpg

相似文献

[1]
Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy.

Nanomicro Lett. 2024-5-2

[2]
Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance.

J Mater Chem B. 2022-10-5

[3]
A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy.

Acta Biomater. 2022-10-1

[4]
Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia.

Part Fibre Toxicol. 2020-7-11

[5]
Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy.

Biomaterials. 2021-10

[6]
Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events.

Med Hypotheses. 2017-4

[7]
Pharmacological Targeting of Ferroptosis in Cancer Treatment.

Curr Cancer Drug Targets. 2022

[8]
Iron-based metal-organic framework co-loaded with buthionine sulfoximine and oxaliplatin for enhanced cancer chemo-ferrotherapy via sustainable glutathione elimination.

J Nanobiotechnology. 2023-8-10

[9]
Bioactive Iridium Nanoclusters with Glutathione Depletion Ability for Enhanced Sonodynamic-Triggered Ferroptosis-Like Cancer Cell Death.

Adv Mater. 2022-11

[10]
Oridonin promotes RSL3-induced ferroptosis in breast cancer cells by regulating the oxidative stress signaling pathway JNK/Nrf2/HO-1.

Eur J Pharmacol. 2024-7-5

引用本文的文献

[1]
Ferroptosis induction by engineered liposomes for enhanced tumor therapy.

Beilstein J Nanotechnol. 2025-8-14

[2]
Designing a Sulfur Vacancy Redox Disruptor for Photothermoelectric and Cascade-Catalytic-Driven Cuproptosis-Ferroptosis-Apoptosis Therapy.

Nanomicro Lett. 2025-7-4

[3]
Advancing the potential of nanoparticles for cancer detection and precision therapeutics.

Med Oncol. 2025-6-4

[4]
Nanotechnology in cancer treatment: revolutionizing strategies against drug resistance.

Front Bioeng Biotechnol. 2025-4-30

[5]
Lanthanide-specific doping in vacancy-engineered piezocatalysts induces lysosomal destruction and tumor cell pyroptosis.

J Nanobiotechnology. 2025-5-3

[6]
From detection to elimination: iron-based nanomaterials driving tumor imaging and advanced therapies.

Front Oncol. 2025-2-7

[7]
Invasion and metastasis in cancer: molecular insights and therapeutic targets.

Signal Transduct Target Ther. 2025-2-21

[8]
Advancing diabetic wound care: The role of copper-containing hydrogels.

Heliyon. 2024-9-26

[9]
Inorganic Nanomedicine-Mediated Ferroptosis: A Synergistic Approach to Combined Cancer Therapies and Immunotherapy.

Cancers (Basel). 2024-9-20

本文引用的文献

[1]
Photonic control of image-guided ferroptosis cancer nanomedicine.

Coord Chem Rev. 2024-2-1

[2]
Boosting chemotherapy of bladder cancer cells by ferroptosis using intelligent magnetic targeting nanoparticles.

Colloids Surf B Biointerfaces. 2024-2

[3]
Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications.

Nanomicro Lett. 2023-11-30

[4]
Ferroptosis-enhanced chemotherapy for triple-negative breast cancer with magnetic composite nanoparticles.

Biomaterials. 2023-12

[5]
Ultrasmall iron-doped zinc oxide nanoparticles for ferroptosis assisted sono-chemodynamic cancer therapy.

Colloids Surf B Biointerfaces. 2023-12

[6]
Revealing the Mutually Enhanced Mechanism of Necroptosis and Immunotherapy Induced by Defect Engineering and Piezoelectric Effect.

Adv Mater. 2024-2

[7]
Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging.

Bioact Mater. 2023-9-29

[8]
Tumor-Generated Reactive Oxygen Species Storm for High-Performance Ferroptosis Therapy.

ACS Nano. 2023-6-27

[9]
Defect Engineering in Biomedical Sciences.

Adv Mater. 2023-9

[10]
Stimuli-responsive ferroptosis for cancer therapy.

Chem Soc Rev. 2023-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索