Suppr超能文献

基于细胞角蛋白的深度学习在 ER、PR 和 Ki-67 染色的乳腺癌中自动识别上皮细胞的应用

Cytokeratin-Supervised Deep Learning for Automatic Recognition of Epithelial Cells in Breast Cancers Stained for ER, PR, and Ki-67.

出版信息

IEEE Trans Med Imaging. 2020 Feb;39(2):534-542. doi: 10.1109/TMI.2019.2933656. Epub 2019 Aug 7.

Abstract

Immunohistochemistry (IHC) of ER, PR, and Ki-67 are routinely used assays in breast cancer diagnostics. Determination of the proportion of stained cells (labeling index) should be restricted on malignant epithelial cells, carefully avoiding tumor infiltrating stroma and inflammatory cells. Here, we developed a deep learning based digital mask for automated epithelial cell detection using fluoro-chromogenic cytokeratin-Ki-67 double staining and sequential hematoxylin-IHC staining as training material. A partially pre-trained deep convolutional neural network was fine-tuned using image batches from 152 patient samples of invasive breast tumors. Validity of the trained digital epithelial cell masks was studied with 366 images captured from 98 unseen samples, by comparing the epithelial cell masks to cytokeratin images and by visual evaluation of the brightfield images performed by two pathologists. A good discrimination of epithelial cells was achieved (AUC of mean ROC = 0.93; defined as the area under mean receiver operating characteristics), and well in concordance with pathologists' visual assessment (4.01/5 and 4.67/5). The effect of epithelial cell masking on the Ki-67 labeling index was substantial. 52 tumor images initially classified as low proliferation (Ki-67 < 14%) without epithelial cell masking were re-classified as high proliferation (Ki-67 ≥ 14%) after applying the deep learning based epithelial cell mask. The digital epithelial cell masks were found applicable also to IHC of ER and PR. We conclude that deep learning can be applied to detect carcinoma cells in breast cancer samples stained with conventional brightfield IHC.

摘要

免疫组织化学(IHC)的 ER、PR 和 Ki-67 常用于乳腺癌的诊断。染色细胞比例(标记指数)的测定应仅限于恶性上皮细胞,同时仔细避免肿瘤浸润的基质和炎症细胞。在此,我们开发了一种基于深度学习的数字掩模,用于使用荧光显色细胞角蛋白-Ki-67 双重染色和顺序苏木精-IHC 染色作为训练材料自动检测上皮细胞。使用来自 152 例浸润性乳腺癌患者样本的图像批次,对部分预先训练的深度卷积神经网络进行微调。使用来自 98 个未见样本的 366 张图像,通过将上皮细胞掩模与细胞角蛋白图像进行比较,并由两位病理学家对明场图像进行视觉评估,研究了训练有素的数字上皮细胞掩模的有效性。实现了上皮细胞的良好区分(平均 ROC 的 AUC = 0.93;定义为平均接收器工作特征的面积),并与病理学家的视觉评估高度一致(4.01/5 和 4.67/5)。上皮细胞掩模对 Ki-67 标记指数的影响很大。52 张最初未经过上皮细胞掩模分类为低增殖(Ki-67 < 14%)的肿瘤图像,在应用基于深度学习的上皮细胞掩模后被重新分类为高增殖(Ki-67≥14%)。数字上皮细胞掩模也适用于 ER 和 PR 的 IHC。我们得出结论,深度学习可用于检测用常规明场 IHC 染色的乳腺癌样本中的癌细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验