Suppr超能文献

初生 RNA 分析:追踪转录及其调控。

Nascent RNA analyses: tracking transcription and its regulation.

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.

Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA.

出版信息

Nat Rev Genet. 2019 Dec;20(12):705-723. doi: 10.1038/s41576-019-0159-6. Epub 2019 Aug 9.

Abstract

The programmes that direct an organism's development and maintenance are encoded in its genome. Decoding of this information begins with regulated transcription of genomic DNA into RNA. Although transcription and its control can be tracked indirectly by measuring stable RNAs, it is only by directly measuring nascent RNAs that the immediate regulatory changes in response to developmental, environmental, disease and metabolic signals are revealed. Multiple complementary methods have been developed to quantitatively track nascent transcription genome-wide at nucleotide resolution, all of which have contributed novel insights into the mechanisms of gene regulation and transcription-coupled RNA processing. Here we critically evaluate the array of strategies used for investigating nascent transcription and discuss the recent conceptual advances they have provided.

摘要

指导生物体发育和维持的程序编码在其基因组中。该信息的解码始于受调控的基因组 DNA 转录为 RNA。尽管转录及其调控可以通过测量稳定的 RNA 来间接追踪,但只有通过直接测量新生 RNA,才能揭示对发育、环境、疾病和代谢信号的即时调控变化。已经开发了多种互补的方法来定量跟踪全基因组核苷酸分辨率的新生转录,所有这些方法都为基因调控和转录偶联的 RNA 处理机制提供了新的见解。在这里,我们批判性地评估了用于研究新生转录的一系列策略,并讨论了它们最近提供的概念性进展。

相似文献

1
Nascent RNA analyses: tracking transcription and its regulation.
Nat Rev Genet. 2019 Dec;20(12):705-723. doi: 10.1038/s41576-019-0159-6. Epub 2019 Aug 9.
2
Genome-wide RNA polymerase II: not genes only!
Trends Biochem Sci. 2008 Jun;33(6):265-73. doi: 10.1016/j.tibs.2008.04.006. Epub 2008 May 6.
4
Bookmarking the genome: maintenance of epigenetic information.
J Biol Chem. 2011 May 27;286(21):18355-61. doi: 10.1074/jbc.R110.197061. Epub 2011 Mar 24.
5
Functional integration of transcriptional and RNA processing machineries.
Curr Opin Cell Biol. 2008 Jun;20(3):260-5. doi: 10.1016/j.ceb.2008.03.001. Epub 2008 Apr 22.
6
Fast and furious: insights of back splicing regulation during nascent RNA synthesis.
Sci China Life Sci. 2021 Jul;64(7):1050-1061. doi: 10.1007/s11427-020-1881-1. Epub 2021 Feb 9.
7
Genome-wide identification of novel genes involved in early Th1 and Th2 cell differentiation.
J Immunol. 2007 Mar 15;178(6):3648-60. doi: 10.4049/jimmunol.178.6.3648.
9
Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome.
Genome Res. 2006 Jan;16(1):1-10. doi: 10.1101/gr.4222606. Epub 2005 Dec 12.

引用本文的文献

1
scIVNL-seq resolves in vivo single-cell RNA dynamics of immune cells during Salmonella infection.
Nat Commun. 2025 Aug 26;16(1):7937. doi: 10.1038/s41467-025-63155-1.
3
Programmable RNA Nanostructures Enable Nanopore Detection of Cotranscriptionally Introduced RNA Modifications.
Nano Lett. 2025 Aug 13;25(32):12184-12192. doi: 10.1021/acs.nanolett.5c02391. Epub 2025 Aug 4.
5
eNRSA: a faster and more powerful approach for nascent transcriptome analysis.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf071.
6
NuclampFISH enables cell sorting based on nuclear RNA expression for chromatin analysis.
BMC Genomics. 2025 Jul 1;26(1):624. doi: 10.1186/s12864-025-11818-0.
7
Efficient profiling of total RNA in single cells with STORM-seq.
bioRxiv. 2025 May 20:2022.03.14.484332. doi: 10.1101/2022.03.14.484332.
9
Atlas of nascent RNA transcripts reveals tissue-specific enhancer to gene linkages.
BMC Genomics. 2025 Apr 25;26(1):406. doi: 10.1186/s12864-025-11568-z.
10
LIET model: capturing the kinetics of RNA polymerase from loading to termination.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf246.

本文引用的文献

1
Population-scale study of eRNA transcription reveals bipartite functional enhancer architecture.
Nat Commun. 2020 Nov 24;11(1):5963. doi: 10.1038/s41467-020-19829-z.
2
Enhancer Histone Acetylation Modulates Transcriptional Bursting Dynamics of Neuronal Activity-Inducible Genes.
Cell Rep. 2019 Jan 29;26(5):1174-1188.e5. doi: 10.1016/j.celrep.2019.01.032.
3
Genomic encoding of transcriptional burst kinetics.
Nature. 2019 Jan;565(7738):251-254. doi: 10.1038/s41586-018-0836-1. Epub 2019 Jan 2.
4
Super-resolution microscopy demystified.
Nat Cell Biol. 2019 Jan;21(1):72-84. doi: 10.1038/s41556-018-0251-8. Epub 2019 Jan 2.
5
Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control Points of Transcriptional Regulation.
Mol Cell. 2019 Feb 7;73(3):519-532.e4. doi: 10.1016/j.molcel.2018.11.004. Epub 2018 Dec 13.
6
Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers.
Nat Genet. 2018 Nov;50(11):1533-1541. doi: 10.1038/s41588-018-0234-5. Epub 2018 Oct 22.
7
Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme.
Nat Genet. 2018 Nov;50(11):1553-1564. doi: 10.1038/s41588-018-0244-3. Epub 2018 Oct 22.
9
Structure of paused transcription complex Pol II-DSIF-NELF.
Nature. 2018 Aug;560(7720):601-606. doi: 10.1038/s41586-018-0442-2. Epub 2018 Aug 22.
10
Structure of activated transcription complex Pol II-DSIF-PAF-SPT6.
Nature. 2018 Aug;560(7720):607-612. doi: 10.1038/s41586-018-0440-4. Epub 2018 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验