Mohora Iva, Patiño Guillén Gerardo, Neis Kevin, Valero Julián, Keyser Ulrich F, Bošković Filip
Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark.
Nano Lett. 2025 Aug 13;25(32):12184-12192. doi: 10.1021/acs.nanolett.5c02391. Epub 2025 Aug 4.
Tracking RNA synthesis and metabolic histories requires cotranscriptional incorporation of modified nucleotides. However, identifying the incorporation of modified nucleotides into nascent RNA remains challenging, particularly for short RNAs. In this work, we developed a method utilizing solid-state nanopores and DNA:RNA nanostructures to detect modified nucleotide incorporation across different RNA length scales, from short to long RNAs transcribed . We identified the incorporation of biotin-modified uridine in short RNAs using a DNA nanostructure coupled with a nanopore readout. As a proof of concept for tracking RNA synthesis, we evaluated the incorporation of azide-modified uridine into long RNAs. To achieve quantitative labeling, we optimized conditions for click chemistry using cyclooctyne-DNA oligonucleotides. Subsequently, we successfully decorated long RNAs with azide-modified uridine and quantified the relative incorporation levels using nanopores. Our study establishes a robust platform for solid-state nanopore characterization of modified nucleotide-containing RNAs, advancing single-molecule analyses of RNA dynamics.
追踪RNA合成和代谢历程需要在转录过程中共转录掺入修饰核苷酸。然而,确定修饰核苷酸掺入新生RNA仍然具有挑战性,尤其是对于短RNA而言。在这项工作中,我们开发了一种利用固态纳米孔和DNA:RNA纳米结构的方法,以检测不同RNA长度尺度上修饰核苷酸的掺入情况,从短RNA到转录的长RNA。我们使用与纳米孔读数相结合的DNA纳米结构,确定了生物素修饰的尿苷在短RNA中的掺入情况。作为追踪RNA合成概念验证,我们评估了叠氮化物修饰的尿苷掺入长RNA的情况。为实现定量标记,我们使用环辛炔-DNA寡核苷酸优化了点击化学的条件。随后,我们成功地用叠氮化物修饰的尿苷修饰了长RNA,并使用纳米孔对相对掺入水平进行了定量。我们的研究建立了一个强大的平台,用于对含修饰核苷酸的RNA进行固态纳米孔表征,推动了对RNA动力学的单分子分析。