Suppr超能文献

核糖体与伴侣蛋白合作指导多结构域蛋白折叠。

The Ribosome Cooperates with a Chaperone to Guide Multi-domain Protein Folding.

机构信息

CMDB Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.

Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Mol Cell. 2019 Apr 18;74(2):310-319.e7. doi: 10.1016/j.molcel.2019.01.043. Epub 2019 Mar 6.

Abstract

Multi-domain proteins, containing several structural units within a single polypeptide, constitute a large fraction of all proteomes. Co-translational folding is assumed to simplify the conformational search problem for large proteins, but the events leading to correctly folded, functional structures remain poorly characterized. Similarly, how the ribosome and molecular chaperones promote efficient folding remains obscure. Using optical tweezers, we have dissected early folding events of nascent elongation factor G, a multi-domain protein that requires chaperones for folding. The ribosome and the chaperone trigger factor reduce inter-domain misfolding, permitting folding of the N-terminal G-domain. Successful completion of this step is a crucial prerequisite for folding of the next domain. Unexpectedly, co-translational folding does not proceed unidirectionally; emerging unfolded polypeptide can denature an already-folded domain. Trigger factor, but not the ribosome, protects against denaturation. The chaperone thus serves a previously unappreciated function, helping multi-domain proteins overcome inherent challenges during co-translational folding.

摘要

多结构域蛋白(Multi-domain proteins)是指在单个多肽中包含多个结构单元的蛋白质,它们构成了所有蛋白质组的很大一部分。共翻译折叠(Co-translational folding)被认为可以简化大蛋白的构象搜索问题,但正确折叠和功能结构的形成过程仍然知之甚少。同样,核糖体和分子伴侣如何促进高效折叠也不清楚。我们使用光学镊子(optical tweezers),解析了新生延伸因子 G 的早期折叠事件,该蛋白是一种需要伴侣蛋白(chaperones)才能折叠的多结构域蛋白。核糖体和伴侣蛋白触发因子(trigger factor)减少了结构域之间的错误折叠,从而允许 N 端 G 结构域折叠。成功完成这一步骤是折叠下一个结构域的关键前提。出乎意料的是,共翻译折叠不是单向进行的;新出现的未折叠多肽可以使已经折叠的结构域变性。触发因子(trigger factor)而不是核糖体(ribosome)可以防止变性。因此,伴侣蛋白(chaperone)发挥了以前未被认识到的功能,帮助多结构域蛋白克服共翻译折叠过程中的固有挑战。

相似文献

3
Energetic dependencies dictate folding mechanism in a complex protein.能量依赖性决定复杂蛋白质的折叠机制。
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25641-25648. doi: 10.1073/pnas.1914366116. Epub 2019 Nov 27.
6
How Does the Ribosome Fold the Proteome?核糖体如何折叠蛋白质组?
Annu Rev Biochem. 2020 Jun 20;89:389-415. doi: 10.1146/annurev-biochem-062917-012226.
7
Single-Molecule Studies of Protein Folding with Optical Tweezers.用光学镊子进行蛋白质折叠的单分子研究。
Annu Rev Biochem. 2020 Jun 20;89:443-470. doi: 10.1146/annurev-biochem-013118-111442.

引用本文的文献

3
Trigger factor accelerates nascent chain compaction and folding.触发因子加速新生肽链的压缩与折叠。
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2422678122. doi: 10.1073/pnas.2422678122. Epub 2025 Jul 25.
6
FAIR data for optical tweezers experiments.光镊实验的公平数据。
Biophys J. 2025 Apr 15;124(8):1255-1272. doi: 10.1016/j.bpj.2025.03.005. Epub 2025 Mar 12.

本文引用的文献

1
Folding up and Moving on-Nascent Protein Folding on the Ribosome.折叠与延伸——核糖体上新生蛋白质的折叠。
J Mol Biol. 2018 Oct 26;430(22):4580-4591. doi: 10.1016/j.jmb.2018.06.050. Epub 2018 Jul 5.
2
Co-Translational Folding Trajectory of the HemK Helical Domain.HemK螺旋结构域的共翻译折叠轨迹
Biochemistry. 2018 Jun 26;57(25):3460-3464. doi: 10.1021/acs.biochem.8b00293. Epub 2018 May 14.
7
Co-translational protein folding: progress and methods.共翻译蛋白质折叠:进展与方法。
Curr Opin Struct Biol. 2017 Feb;42:83-89. doi: 10.1016/j.sbi.2016.11.020. Epub 2016 Dec 9.
8
Quantitative determination of ribosome nascent chain stability.核糖体新生链稳定性的定量测定。
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13402-13407. doi: 10.1073/pnas.1610272113. Epub 2016 Nov 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验