Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
Department of Radiology, Université Paris Descartes, 12 rue de l'Ecole de Medecine, 75006, Paris, France.
Neuroradiology. 2019 Dec;61(12):1387-1395. doi: 10.1007/s00234-019-02279-w. Epub 2019 Aug 10.
This study aimed to evaluate the accuracy and diagnostic test performance of the U-net-based segmentation method in neuromelanin magnetic resonance imaging (NM-MRI) compared to the established manual segmentation method for Parkinson's disease (PD) diagnosis.
NM-MRI datasets from two different 3T-scanners were used: a "principal dataset" with 122 participants and an "external validation dataset" with 24 participants, including 62 and 12 PD patients, respectively. Two radiologists performed SNpc manual segmentation. Inter-reader precision was determined using Dice coefficients. The U-net was trained with manual segmentation as ground truth and Dice coefficients used to measure accuracy. Training and validation steps were performed on the principal dataset using a 4-fold cross-validation method. We tested the U-net on the external validation dataset. SNpc hyperintense areas were estimated from U-net and manual segmentation masks, replicating a previously validated thresholding method, and their diagnostic test performances for PD determined.
For SNpc segmentation, U-net accuracy was comparable to inter-reader precision in the principal dataset (Dice coefficient: U-net, 0.83 ± 0.04; inter-reader, 0.83 ± 0.04), but lower in external validation dataset (Dice coefficient: U-net, 079 ± 0.04; inter-reader, 0.85 ± 0.03). Diagnostic test performances for PD were comparable between U-net and manual segmentation methods in both principal (area under the receiver operating characteristic curve: U-net, 0.950; manual, 0.948) and external (U-net, 0.944; manual, 0.931) datasets.
U-net segmentation provided relatively high accuracy in the evaluation of the SNpc in NM-MRI and yielded diagnostic performance comparable to that of the established manual method.
本研究旨在评估基于 U-net 的分割方法在神经黑色素磁共振成像(NM-MRI)中的准确性和诊断测试性能,与帕金森病(PD)诊断的既定手动分割方法进行比较。
使用来自两个不同 3T 扫描仪的 NM-MRI 数据集:一个包含 122 名参与者的“主要数据集”和一个包含 24 名参与者的“外部验证数据集”,其中分别包括 62 名和 12 名 PD 患者。两名放射科医生进行 SNpc 手动分割。使用 Dice 系数确定读者间精度。U-net 使用手动分割作为地面真实进行训练,并使用 Dice 系数测量准确性。使用 4 折交叉验证方法在主要数据集上进行训练和验证步骤。我们在外部验证数据集上测试了 U-net。从 U-net 和手动分割掩模中估计 SNpc 高信号区域,复制了先前验证的阈值方法,并确定其对 PD 的诊断测试性能。
对于 SNpc 分割,U-net 的准确性与主要数据集的读者间精度相当(Dice 系数:U-net,0.83±0.04;读者间,0.83±0.04),但在外部验证数据集较低(Dice 系数:U-net,0.79±0.04;读者间,0.85±0.03)。在主要(受试者工作特征曲线下面积:U-net,0.950;手动,0.948)和外部数据集(U-net,0.944;手动,0.931)中,U-net 和手动分割方法的 PD 诊断测试性能相当。
U-net 分割在 NM-MRI 中 SNpc 的评估中提供了相对较高的准确性,并产生了与既定手动方法相当的诊断性能。